A PROPERTY OF FREE BOOLEAN ALGEBRAS

ALFRED HORN¹

Consider the following properties of a Boolean algebra A:

 P_1 : Every set of pairwise disjoint elements of A is countable.

 P_2 : Every chain in A is countable.

For arbitrary Boolean algebras neither of these properties implies the other. The algebra of all sets of integers satisfies P_1 but not P_2 , while the algebra of all finite or cofinite sets of real numbers satisfies P_2 but not P_1 . It is well known that P_1 holds in any free Boolean algebra. However it is not generally realized that P_2 also holds in free Boolean algebras. In fact this statement has not explicitly appeared in the literature, although it is a consequence of a theorem in topology due to N. A. Šanin [1, Theorem 50]. The following is a simple direct proof of the statement.

THEOREM. Every chain in a free Boolean algebra is countable.

PROOF. Let T be a set of cardinality α and let M be the set of all functions on T with values 0 or 1. For each $t \in T$ let $D_t = \{f \in M: f(t) = 1\}$. The algebra F generated by the sets D_t is the free Boolean algebra with α free generators. Now suppose C is an uncountable chain in F. We may assume $0 \notin C$. For each member x of C there is a finite subset A of T such that x is in the subalgebra generated by $\{D_t: t \in A\}$. Therefore there exist distinct subsets A_1, \dots, A_r of A such that

(1)
$$x = \bigcup_{i=1}^{r} \left[\bigcap_{t \in A_i} D_t \cap \bigcap_{t \in A - A_i} \overline{D}_t \right].$$

Thus to each member of C we can associate a pair (n, r) of positive integers, where n is the cardinality of A, and r is the number of subsets A_i . Since C is uncountable there will certainly be distinct members x and y of C associated with the same pair (n, r). Then there exist subsets A and B of T with cardinality n, distinct subsets A_1, \dots, A_r of A, and distinct subsets B_1, \dots, B_r of B such that (1) holds, and

(2)
$$y = \bigcup_{i=1}^{r} \left[\bigcap_{t \in B_i} D_t \cap \bigcap_{t \in B - B_i} \overline{D}_t \right].$$

Since C is a chain we may assume $x \subset y$. We will reach a contradiction by showing x = y.

Received by the editors November 1, 1966.

¹ This research was supported in part by National Science Foundation Grant No. 5600.

If f is any member of M and $S = \{t: f(t) = 1\}$, then $f \in x$ if and only if $S \cap A = A_i$ for some i. Since $x \subset y$, it follows that for any subset S of T,

(3) if $S \cap A = A_i$ for some i, then $S \cap B = B_j$ for some j.

Let C_1, \dots, C_p be the distinct members of $\{A_i \cap B : 1 \le i \le r\}$ and q be the cardinality of A - B, which is also equal to the cardinality of B - A. If K is any subset of B - A, then by (3) with $S = A_i \cup K$, we see that for each k, $1 \le k \le p$, there is a j such that $K \cup C_k = B_j$. Therefore $r \ge p \cdot 2^q$. However we also have $r \le p \cdot 2^q$, since each A_i is of the form $C_k \cup K$ for some k, and some subset K of A - B. Thus $r = p \cdot 2^q$, and hence

(4)
$$\{B_i: 1 \leq i \leq r\} = \{C_k \cup K: 1 \leq k \leq p \text{ and } K \subseteq B - A\}$$

and

(5)
$$\{A_i: 1 \leq i \leq r\} = \{C_k \cup K: 1 \leq k \leq p \text{ and } K \subseteq A - B\}.$$

Let $D = A \cap B$. Then by (2) and (4),

$$y = \bigcup_{k=1}^{p} \bigcup_{K \subseteq B-A} \left[\bigcap_{t \in C_k \cup K} D_t \cap \bigcap_{t \in B-(C_k \cup K)} \overline{D}_t \right]$$

$$= \bigcup_{k=1}^{p} \left[\bigcap_{t \in C_k} D_t \cap \bigcap_{t \in D-C_k} \overline{D}_t \right] \cap \bigcup_{K \subseteq B-A} \left[\bigcap_{t \in K} D_t \cap \bigcap_{t \in (B-A)-K} \overline{D}_t \right]$$

$$= \bigcup_{k=1}^{p} \left[\bigcap_{t \in C_k} D_t \cap \bigcap_{t \in D-C_k} \overline{D}_t \right].$$

Similarly

$$x = \bigcup_{k=1}^{p} \left[\bigcap_{t \in C_k} D_t \cap \bigcap_{t \in D - C_k} \overline{D}_t \right]$$

and so x = y.

REFERENCE

1. N. A. Šanin, O proizvedenii topologičlskih prostranstv, Trudy Mat. Inst. Steklov. 24 (1948), 112 pp.

University of California, Los Angeles