ON THE NETTO INVERSION NUMBER OF A SEQUENCE

DOMINIQUE FOATA

1. Introduction. Let $g = (x_1, x_2, \dots, x_n)$ be an arbitrary sequence of real numbers and \mathbb{C} the set of all sequences that can be formed from g by permutations. If $f = (x_{i_1}, x_{i_2}, \dots, x_{i_n})$ is in \mathbb{C} , the *inversion number* S(f) of f is defined as the number of couples (j, k) such that $1 \le j < k \le n$ and $x_{i_j} > x_{i_k}$ and the *index* T(f) of f as the sum of all integers f such that $1 \le j \le n-1$ and f and f

The function S seems to have been introduced by Netto [6] and rediscovered many times in statistics in the theory of rank tests. It also appears in the so-called two-sample problem under the name of Wilcoxon-Mann-Whitney statistic (see e.g. [1]).

MacMahon ([3], [4]) introduced the function T in the study of ordered partitions. Let q be a real or complex variable and $S = \sum \{q^{S(f)}: f \in \mathcal{C}\}$ (resp. $T = \sum \{q^{T(f)}: f \in \mathcal{C}\}$) be the generating function of S (resp. T). He then obtained [5] the surprising result that S and T have the same expression. Hence the fact that

(1.1) for any nonnegative integer m there are in \mathbb{C} as many sequences f such that S(f) = m as sequences f' such that T(f') = m.

It seems that no explicit one-to-one correspondence has been so far given between the set of sequences for which T is equal to m and the set of sequences for which S is equal to m. The purpose of the present paper is to give the construction of such a correspondence. This construction, without fully explaining the above result (1.1), allows us to introduce a new class of rearrangements of sequences and apply the same noncommutative algebraic methods as in [2].

In what follows, it will be more convenient to identify a sequence $f = (x_{i_1}, x_{i_2}, \dots, x_{i_n})$ of \mathfrak{C} with the associative monomial or word $x_{i_1}x_{i_2} \dots x_{i_n}$ of the free monoid X^* generated by $X = \mathbb{R}$, to extend the definition of S and T to all of X^* and to construct a permutation Φ of X^* satisfying

(1.2)
$$S(\Phi(f)) = T(f)$$
 for all $f \in X^*$

and such that if $f = x_{i_1}x_{i_2} \cdot \cdot \cdot x_{i_n}$, then $\Phi(f) = x_{v_1}x_{v_2} \cdot \cdot \cdot x_{v_n}$ where $(x_{v_1}, x_{v_2}, \cdot \cdot \cdot, x_{v_n})$ is a permutation of $(x_{i_1}, x_{i_2}, \cdot \cdot \cdot, x_{i_n})$.

The definitions and notations being given in §2, a set of permutations $(\gamma_x)_{x\in X}$ of X^* is introduced (§3) and the permutation Φ is defined in §4 by induction on the length of the words of X^* , i.e. for all $x\in X$ and $f\in X^*$, we set

$$\Phi(x) = x$$
 and $\Phi(fx) = \gamma_x(\Phi(f))x$.

2. Notations and definitions. In what follows, X^* is the free monoid generated by a totally ordered set X. Each element f of X^* can be written as a word $f = x_1 \ x_2 \cdots x_n$ where x_1, x_2, \cdots, x_n belong to X and are the n letters of the word and where n is a nonnegative integer, by definition equal to the length of f, denoted by λf . The word of length 0 is the empty word denoted by I. The words of length n ($n \ge 0$) constitute a subset of X^* denoted by X_n and X_1 is identified with X. If f is the product of f (s f 2) words f 1, f 2, f 2, f 3 is a factorization of f 3. The word f is also a factorization of itself.

Moreover if Y and Z are subsets of X^* , we designate by Y^* the submonoid generated by Y and by YZ the subset of the words f=f'f'' with $f' \in Y$ and $f'' \in Z$. Thus XX^* ($=X^*X$) is the subset of words of positive length. Now since X is totally ordered, each $x \in X$ determines a partition of X in two subsets L_x and R_x . The set $L_x =] \leftarrow$, x] (resp. $R_x =]x$, $\rightarrow [$) is formed with all $y \in X$ such that $y \leq x$ (resp. y > x). Then for each $x \in X$ and $f = x_1x_2 \cdot \cdots \cdot x_n \in X^*$, we denote by $l_x f$ (resp. $r_x f$) the number of subscripts j for which $1 \leq j \leq n$ and $x_j \leq x$ (resp. $x < x_j$). Note that we always have $l_x f + r_x f = \lambda f$. If $l_x f = l_x f'$ for all $x \in X$ or if f' is a rearrangement of the letters of f, we set $\alpha(f) = \alpha(f')$.

Finally for $f = x_1 x_2 \cdot \cdot \cdot x_n \in X^*$, we set

S(f) = number of couples (j, k) such that $1 \le j < k \le n$ and $x_j > x_k$. T(f) = sum of all integers j such that $1 \le j \le n-1$ and $x_j > x_{j+1}$.

$$f^{\pi} = f$$
 if $n = 0$ or 1,
= $x_n x_1 x_2 \cdots x_{n-1}$ if $n > 1$.

3. The set of permutations $(\gamma_x)_{x \in X}$. First, it is obvious that for every $x \in X$,

$$\{X^*L_x, X^*R_x\}$$
 and $\{L_xX^*, R_xX^*\}$

are two partitions of X^*X (= XX^*). Moreover, let $f = x_1x_2 \cdots x_n$ be a word of X^*L_x (resp. X^*R_x , L_xX^* , R_xX^*) and denote by (r_1, r_2, \dots, r_s) the increasing sequence of integers j ($1 \le j \le n$) such that $x_j \in L_x$ (resp. R_x , L_x , R_x). This sequence is not empty. Put $r_0 = 0$, $r_{s+1} = n+1$ and for $p = 1, 2, \dots, s$

$$f_p = x_{r_{p-1}+1}x_{r_{p-1}+2} \cdot \cdot \cdot x_{r_p}$$
 if $f \in X^*L_x$ or $f \in X^*R_x$

and

$$f_p = x_{r_p} x_{r_p+1} \cdot \cdot \cdot x_{r_{p+1}-1}$$
 if $f \in L_x X^*$ or $f \in R_x X^*$.

Clearly, $f_1f_2 \cdot \cdot \cdot f_s$ is the unique factorization of f where each $f_p \in R_x^* L_x$ (resp. $L_x^* R_x$, $L_x R_x^*$, $R_x L_x^*$).

This factorization will now be used for establishing a one-to-one correspondence between X^*L_x and L_xX^* on one hand, and X^*R_x and R_xX^* on the other hand and so defining a permutation γ_x of X^* . First we set $\gamma_x(I) = I$, then if $f_1f_2 \cdot \cdot \cdot f_s$ is the factorization of a word $f \in X^*L_x$ (resp. X^*R_x) into words of $R_x^*L_x$ (resp. $L_x^*R_x$), we set

$$\gamma_{\mathbf{z}}(f) = f_1^{\pi} f_2^{\pi} \cdots f_s^{\pi}.$$

We have $f_p^* \in L_x R_x^*$ (resp. $R_x L_x^*$) for $p = 1, \dots, s$; hence from above $f_1 f_2 \dots f_p$ is the factorization of a unique word $\gamma_x(f) \in L_x X^*$ (resp. $R_x X^*$) into words of $L_x R_x^*$ (resp. $R_x L_x^*$). Finally, as $h \to h^x$ maps in a one-to-one manner $L_x^* R_x$ onto $R_x L_x^*$ and $R_x^* L_x$ onto $L_x R_x^*$, γ_x is a permutation of X^* and besides, for every $f \in X^*$, $\gamma_x(f)$ is a rearrangement of the letters of f, i.e.

$$\alpha(\gamma_x(f)) = \alpha(f).$$

Before introducing the permutation Φ , we give in the following lemma some properties of the functions S and T.

(3.3) LEMMA. For each
$$f \in X^*$$
 and $x \in X$,

$$(3.4) S(fx) = S(f) + r_x f,$$

$$(3.5) S(\gamma_x(f)) = S(f) - r_x f \text{ if } f \in X^*L_x,$$

$$(3.6) S(\gamma_x(f)) = S(f) + l_x f \quad \text{if } f \in X^*R_x,$$

$$(3.7) T(fx) = T(f) if f \in X^*L_x,$$

(3.8)
$$T(fx) = T(f) + \lambda f \quad \text{if } f \in X^*R_x.$$

PROOF. Let $f = x_1x_2 \cdot \cdot \cdot x_n \in X^*$.

First, (3.4) holds for the inversion number of fx is equal to the inversion number of f, plus the number of subscripts j $(1 \le j \le n)$ such that $x_j > x$, i.e. $r_x f$.

Now if $f \in R_x^* L_x$, we can write $f = f'x_n$ $(f' \in R_x^*, x_n \le x)$; thence

$$(3.9) r_x f = r_{x_n} f = r_{x_n} f' = \lambda f'.$$

But $\gamma_x(f) = f^x = x_n f'$. Thus $S(\gamma_x(f))$ is equal to the inversion number of f' plus if n > 1, the number of subscripts j $(1 \le j \le n - 1)$ such that $x_n > x_j$, which is 0 since $f' \in \mathbb{R}^*_x$, i.e.

$$S(\gamma_x(f)) = S(x_n f') = S(f')$$

= $S(f'x_n) - r_{x_n} f'$ from (3.4)
= $S(f) - r_x f$ from (3.9);

- (3.5) is then true for the words $f \in R_x^* L_x$. Finally, if $f \in X^* L_x$, let $f_1 f_2 \cdots f_s$ be its factorization into words of $R_x^* L_x$. By applying γ_x to f, we obtain $\gamma_x(f) = f_1^* f_2^* \cdots f_s^*$ and clearly the inversion number of f is decreased by $r_x f_1 + r_x f_2 + \cdots + r_x f_s$, i.e. $r_x f$.
- (3.6) has an analogous proof. We simply notice that applying γ_x to a word f of $L_x^*R_x$, increases the inversion number by $\lambda f 1$, or $l_x f$.

When $f \in X^*L_x$, the last letter x_n of f is less than or equal to x and the indices of f and fx are the same. Hence (3.7) holds.

On the contrary, if $f \in X^*R_x$, then $x_n > x$ and we get

$$T(fx) = T(f) + \lambda f.$$

That is (3.8), which completes the proof of the lemma.

4. The combinatorial theorem. By induction on the length of words $f \in X^*$, we then define Φ in the following way:

$$\Phi(f) = f \quad \text{if } \lambda f \le 1$$

and

(4.2)
$$\Phi(fx) = \gamma_x(\Phi(f))x \text{ for all } x \in X.$$

We then have

(4.3) Theorem. The map $\Phi: X^* \rightarrow X^*$

(4.5)
$$\alpha(\Phi(f)) = \alpha(f)$$

(4.6)
$$S(\Phi(f)) = T(f)$$
 identically.

PROOF. It is sufficient to verify that for all $n \ge 0$ the restriction Φ_n of Φ to X_n is a permutation of X_n satisfying (4.5) and (4.6). This is obvious for $n \le 1$ since by definition Φ_0 (or Φ_1) is the identity map. On the other hand from the definition of Φ we have for n > 0,

$$\Phi_{n+1}(fx) = \gamma_x(\Phi_n(f))x,$$

valid for all $f \in X_n$ and $x \in X$.

So assume that Φ_n is a permutation of X_n satisfying $\alpha(\Phi_n(f)) = \alpha(f)$ and $S(\Phi_n(f)) = T(f)$ identically. Then $\gamma_x \circ \Phi_n$ is also a permutation of X_n and satisfies $\alpha(\gamma_x(\Phi_n(f))) = \alpha(f)$ identically according to (4.7).

Hence, $fx \to \Phi_{n+1}(fx) = \gamma_x(\Phi_n(f))x$ is a permutation of the subset of the words of X_n ending by x and also $\alpha(\Phi_{n+1}(fx)) = \alpha(fx)$.

Since $X_{n+1} = \bigcup_{x \in X} X_n \{x\}$, it then follows that Φ_{n+1} is a permutation of X_{n+1} satisfying

$$\alpha(\Phi_{n+1}(f)) = \alpha(f)$$
 identically.

Property (4.6) is then a consequence of the lemma. For

$$S(\Phi_{n+1}(fx)) = S(\gamma_x(\Phi_n(f))x)$$

$$= S(\gamma_x(\Phi_n(f))) + r_x\gamma_x(\Phi_n(f)) \quad (according to (3.4))$$

$$= S(\gamma_x(\Phi_n(f))) + r_xf$$

since $\gamma_x(\Phi_n(f))$ is only a rearrangement of the letters of f. Two cases are to be considered.

(i) $f \in X^*L_x$. Then

$$S(\gamma_x(\Phi_n(f))) = S(\Phi_n(f)) - r_x\Phi_n(f) \quad (according to (3.5))$$

= $S(\Phi_n(f)) - r_x f$.

Hence,

$$S(\Phi_{n+1}(fx)) = S(\Phi_n(f))$$

= $T(f)$ (by induction)
= $T(fx)$ (according to (3.7)).

(ii) $f \in X^*R_x$. Then

$$S(\gamma(_x\Phi_n(f))) = S(\Phi_n(f)) + l_x\Phi_n(f) \quad \text{(according to (3.6))}$$
$$= S(\Phi_n(f)) + l_xf.$$

Hence.

$$S(\Phi_{n+1}(fx)) = S(\Phi_n(f)) + l_x f + r_x f$$

= $T(f) + \lambda f$ (by induction)
= $T(fx)$ (according to (3.8)).

This establishes the theorem.

References

- 1. F. N. David and D. E. Barton, Combinatorial chance, Griffin, London, 1962.
- 2. D. Foata, Étude algébrique de certains problèmes d'analyse combinatoire et du calcul des probabilités, Publ. Inst. Statist. Univ. Paris 14 (1965), 81-241.
- 3. P. A. MacMahon, Combinatory analysis, Vol. 1, Cambridge Univ. Press, Cambridge, 1915.
- 4. ——, The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects, Amer. J. Math 35 (1913), 281–322.
- 5. ——, Two applications of general theorems in combinatory analysis, Proc. London Math. Soc. 15 (1916), 314-321.
 - 6. E. Netto, Lehrbuch der Combinatorik, Chelsea, New York, 1901.
- 7. M. P. Schützenberger, On a factorisation of free monoids, Proc. Amer. Math. Soc. 16 (1965), 21-24.

Institut de Recherche Mathématique Avancée, Université de Strasbourg