
ON THE NETTO INVERSION NUMBER OF A SEQUENCE

DOMINIQUE FOATA

1. Introduction. Let g = (xi, x2, ■ ■ • , x„) be an arbitrary sequence

of real numbers and C the set of all sequences that can be formed from

g by permutations. If /= (x^, x,2, • • • , X;J is in C, the inversion num-

ber S(f) of / is defined as the number of couples (j, k) such that

l^j<k^n and xij>xik and the 4"ffaex T(f) of / as the sum of all

integers/ such that l^jgw —1 and xtj>x!j+r

The function 5 seems to have been introduced by Netto [6] and

rediscovered many times in statistics in the theory of rank tests. It

also appears in the so-called two-sample problem under the name of

Wilcoxon-Mann-Whitney statistic (see e.g.  [l]).

MacMahon ([3], [4]) introduced the function T in the study

of ordered partitions. Let q be a real or complex variable and

S=Z {qsln:fEQ} (resp. T= £ {qT{n: /GeJ) be the generating

function of 5 (resp. T). He then obtained [5] the surprising result

that S and T have the same expression. Hence the fact that

(1.1) for any nonnegative integer m there are in 6 as many sequences

f such that S(f) =m as sequences/' such that T(f') =m.

It seems that no explicit one-to-one correspondence has been so far

given between the set of sequences for which T is equal to m and the

set of sequences for which 5 is equal to m. The purpose of the present

paper is to give the construction of such a correspondence. This construc-

tion, without fully explaining the above result (1.1), allows us to in-

troduce a new class of rearrangements of sequences and apply the

same noncommutative algebraic methods as in  [2].

In what follows, it will be more convenient to identify a sequence

/=(*<„ x,j, • ■ • , x,J of Q with the associative monomial or word

x,jXi2 • • • Xin of the free monoid X* generated by X = R, to extend

the definition of 5 and T to all of X* and to construct a permutation

<l> of X* satisfying

(1.2) 5($(/)) = T(f)    for all / £ A*

and such that if f = xhxh ■ ■ ■ x,„, then $(f)=xVlxv, • • • xv„ where

(xVl, x„2, • • • , x„J is a permutation of (x,„ x,-2, ■ • • , x,-J.

The definitions and notations being given in §2, a set of permuta-

tions (yx)xGx of X* is introduced (§3) and the permutation <i> is de-

fined in §4 by induction on the length of the words of X*, i.e. for all

xEX and f EX*, we set
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$(x) = x    and    <K/x) = yxi$(J))x.

2. Notations and definitions. In what follows, A* is the free

monoid generated by a totally ordered set A. Each element / of A*

can be written as a wordf=xi x2 ■ ■ ■ xn where Xi, x2, ■ ■ ■ , x„ belong

to A and are the n letters of the word and where n is a nonnegative

integer, by definition equal to the length off, denoted by X/. The word

of length 0 is the empty word denoted by 2. The words of length

m (m ̂  0) constitute a subset of A* denoted by Xn and Ai is identified

with A. If/ is the product of 5 (5 2:2) words fi, fi, ■ ■ ■ , f, of A*, we

write f=fifi ■ ■ ■ f, and as in [7] we say that/i/2 • • • /, is a factoriza-

tion of /. The word / is also a factorization of itself.

Moreover if Y and Z are subsets of A*, we designate by F* the

submonoid generated by F and by YZ the subset of the words/=/'/"

with f'E Y and f'EZ. Thus AA* ( = X*X) is the subset of words of
positive length. Now since X is totally ordered, each x£A de-

termines a partition of A in two subsets Lx and Rx .The set Lx= ]*—,

x] (resp. Rx=]x, —>[) is formed with all yEX such that y^x

(resp. y>x). Then for each x£A and/ = xix2 ■ • • xnEX*, we denote

by lxf (resp. rxf) the number of subscripts j for which l^j^n and

xy^x (resp. x<Xj). Note that we always have lxf+rxf=\f. If

lxf=lxf for all xEX or if/' is a rearrangement of the letters of/, we

set <*(/)= a(/').

Finally for/ = XiX2 • • • xn£A*, we set

5(/)= number of couples (j, k) such that l^j<k^n and Xj>Xa,.

P(/)=sum of all integers/ such that l^j = n — 1 and xy>Xy+i.

f* = /   if M = 0 or 1,

= xn Xi x2 • • • xn-i    if n > 1.

3. The set of permutations iyx)xex. First, it is obvious that for

every x£A,

{X*LX, X*RX}    and    {LXX*,RXX*}

are two partitions of A*A ( = AA*). Moreover, let f = xix2 ■ ■ ■ xn

be a word of X*LX (resp. X*RX, LXX*, RXX*) and denote by

(/i, r2, • • • , rs) the increasing sequence of integers/ (1^/^m) such

that XjELx (resp. Rx, Lx, Rz). This sequence is not empty. Put

ro = 0, rs+i = n + l and for p = l, 2, • ■ ■ , s

fP = xTp_1+iXrp_i+2 ■ ■ ■ xTp   if / £ A*£x or/ £ A*2^

and

/„ = Xr^Xiyt-i • • • xTp+l-i if f E LXX* or/ E RXX*.
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Clearly, /i/2 • ■ •/. is the unique factorization of f where each

fPER*Lx (resp. L*XRX, LXR*X, RXL*X).

This factorization will now be used for establishing a one-to-one

correspondence between X*LX and LXX* on one hand, and X*RX and

RXX* on the other hand and so defining a permutation yx of X*.

First we set yx(I) =7, then if /if2 • • • /, is the factorization of a word

/EX*LX (resp. X*RX) into words of R*LX (resp. L*RX), we set

(3.1) yx(f)=fifl-■-fl

We have flELxR* (resp. RXL*) for p= 1, • • • , s; hence from above

fih ■ • • /P is the factorization of a unique word yz(f)ELxX*

(resp. RXX*) into words of LXR* (resp. RxL*). Finally, as h—>h*

maps in a one-to-one manner L*RX onto AXL* and R*LX onto LXR*,

yx is a permutation of A'* and besides, for every /EX*, yx(/) is a rear-

rangement of the letters of/, i.e.

(3.2) a(yx(f)) = «(/)•

Before introducing the permutation $, we give in the following

lemma some properties of the functions 5 and T.

(3.3) Lemma. For each/EX* and xEX,

(3.4) S(/x) = S(/) + rx/,

(3.5) S(yx(f)) = S(f) - rj   iff £ X*LX,

(3.6) S(yx(f)) = S(f) + lxf    4// £ X*RX,

(3.7) T(fx) = T(f) iffEX*Lx,

(3.8) T(fx) = 7(/) +X/    4// £ X*RX.

Proof. Let/=xix2 • ■ • xnEX*.

First, (3.4) holds for the inversion number of fx is equal to the in-

version number of/, plus the number of subscripts/ (l^/Ssff) such

that Xj>x, i.e. rxf.

Now if/£A*7I, we can write/=/'x„ (/'£A*, x„^x); thence

(3-9) rxf=rxJ=rxJ' = \/>.

But yx(/)=/T = xnf'. Thus S(yx(f)) is equal to the inversion number

of/' plus if w>l, the number of subscripts j (l^j?S,n — l) such that

x„>xy, which is 0 since/'£A*, i.e.

S(yx(f)) = S(x„f) = S(f)

= S(f'xn) - rxf    from (3.4)

= S(f)-rxf from (3.9);
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(3.5) is then true for the words fER*Lx. Finally, if fEX*Lx, let

/1/2 ■ ■ •/. be its factorization into words of R*LX. By applying yx

to/, we obtain yx(J) =fifi • • • fj and clearly the inversion number of

f is decreased by rxfi+rxf2+ ■ ■ • +rxfs, i.e. rxf.

(3.6) has an analogous proof. We simply notice that applying yx

to a word/of L*RX, increases the inversion number by X/— 1, or lxf.

WhenfEX*Lx, the last letter x„ of / is less than or equal to x and

the indices of/ and fx are the same. Hence (3.7) holds.

On the contrary, if fEX*Rx, then x„>x and we get

Tifx) = Tif) + Xf.

That is (3.8), which completes the proof of the lemma.

4. The combinatorial theorem. By induction on the length of

words fEA*, we then define $ in the following way:

(4.1) *(/) = /   ifX/£ 1

and

(4.2) $(/*) = yx(Hf))x   for all x E X.

We then have

(4.3) Theorem. The map <£: X*—*X*

(4.4) is a permutation; and we have

(4.5) «($(/)) = «(/)

(4.6) 5($(/)) = Ti\f) identically.

Proof. It is sufficient to verify that for all wStO the restriction

$„ of <I> to A„ is a permutation of Xn satisfying (4.5) and (4.6). This

is obvious for »gl since by definition $0 (or $i) is the identity map.

On the other hand from the definition of $ we have for m>0,

(4.7) *n+iifx) = 7*(*„(/))x,

valid for all/£A„ and xEX.

So assume that <&„ is a permutation of Xn satisfying a(<E>„(/)) =a(f)

and 5(<I>„(/)) = T(J) identically. Then yx o $„ is also a permutation of

Xn and satisfies a(y^(<£„(/))) =a(J) identically according to (4.7).

Hence,/x—>#„+i(/x) =yxi^nif))x is a permutation of the subset of

the words of Xn ending by x and also a($„+i(/x)) =a(Jx).

Since A„+i = U*ex Xn {x}, it then follows that <£„+! is a permutation

of A„+i satisfying

a($„+1(/)) = «(/) identically.
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Property (4.6) is then a consequence of the lemma. For

S(4>n+i(/x)) = S(yx(4>n(f))x)

= S(yx($n(f))) + r,7»(*»C/))    (according to (3.4))

= S(yx(t>n(f))) + rxf

since yx($n(f)) is only a rearrangement of the letters of/.

Two cases are to be considered.

(i) fEX*Lx. Then

5(7x($n(/))) = 5($„(/)) - r.<bn(J)    (according to (3.5))

= 5(*„(/)) - rxf.

Hence,

5(#n+,(/x)) = 5($„(/))

= 7(/)      (by induction)

= T(fx)    (according to (3.7)).

(ii)   fEX*Rx. Then

S(y(x$n(/))) = 5(4>n(/)) + *,*„(/)    (according to (3.6))

= 5($„(/)) + J*/.

Hence,

5(<W/x)) = 5(3>„(/)) + lxf + rx}

= T(/) + \f    (by induction)

= T(/x)    (according to (3.8)).

This establishes the theorem.
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