
NONGENERATORS OF RINGS

HOMER bechtell

The purpose of this note is to examine the role of nongenerators in

the theory of rings, i.e. the elements x of a ring R such that for each

subset M of R for which R = (x, M), then (M) = R. The approach used

considers a ring as a group with multiple operators and consequently

an ideal A generated by a subset 5 implies that S^A. These results

will include those of L. Fuchs [l] and A. Kertesz [2] whenever the

ring has unity.

Unless otherwise indicated, the terminology and the necessary

known results may be found in N. McCoy's text [3].

Denote the ideal (right ideal) generated by the set M of R by (M)

i(M)r).

Definition. An element xEA is a generator of an ideal (right ideal)

A in a ring R provided that there is a subset M of A such that

A=(x, M) iA = (x, M)r) and (M)EA i(M\EA) properly. Other-

wise x is called a nongenerator of A. (Note that M may be empty.)

The set of nongenerators of an ideal (right ideal) A in a ring R will

be denoted by $ ($r), respectively.

Immediate consequences of the definition are the following:

(i) For an element x of a ring R, x£$ (xG$r) if and only if (x)C$

«x)rC$r).

(ii) In a ring R, $ is an ideal and $r is a right ideal.

Throughout this paper a maximal ideal of a ring R will be a proper

ideal of R that is not contained in another proper ideal of R. Similarly

for maximal right (left) ideals.

(iii) In a ring R, $ ($r) is the intersection of the maximal ideals

(right ideals), if they exist, and is R otherwise.

(iv) For a ring R and homomorphism 6 of R, $8C$iR6) and

$r0C$r(A0).

(v) For an ideal A of a ring R, 4C$ implies that $iR/A) =&/A

and ACl$r implies that $r(2?/^4) =&r/A.

(vi) For a ring R, if A is an ideal (right ideal) of R, then $04)C$

(*r(il)C*r).

(vii) In a ring R, $=(0) (<£>r=(0)) implies that $04) = (0)

($,.04) = (0)) for each ideal (right ideal) A of R. Such rings will be

called $-/ree or Qr-free respectively.
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(viii) In a ring R, A =$(A) (A = $>r(A)) for an ideal (right ideal)

A of R implies that AC$ (4C$r).

(ix)  If R is a ring and R = Afi© • • • ® M„, then *=$(Afi)© • ■ •

®$(Mn) for ideals M{ of R.

(x) In a ring R, if 4 is a minimal ideal (right ideal) such that

^4Cj:cp (AQ$T), then there exists a maximal ideal (right ideal) B such

that R = A®B.
(xi) If A is a zero ring (A2= (0)), then $=$(A+), 4>(i?+) the Frat-

tini subgroup of the additive group R+.

In the remaining portion of this note, the Jacobson radical and the

upper Baer radical will be denoted by J and N respectively.

Theorem 1. In a ring R, $,CJ and $CJV.

Proof. If J^R, then / is the intersection of the modular maximal

right ideals of R; and if N^R, then N is the intersection of the

modular maximal ideals.

Note that in Theorem 1 equality may not occur as the ring

{0, 2; mod 4} exemplifies.

Theorem 2. 7w a ring R, RJC$r and JRQ$i,$i denoting the set

o/ nongenerators with respect to left ideals.

Proof. Since the result follows if $r = R, consider the case that

$r£A properly. Suppose there is an element x£A such that yx£$r

for some element y£A. Then there exists a maximal right ideal M

such that yx£ M. M defines a simple right A-moduIe R/M=R*, and

under the natural A-homomorphism 9 of R—+R*, y9^0 and (yx)(M0.

So (R*)R = R*, and an element z£A exists such that (yxz)9=y9.

Then note that if xz is r.q.r., there exists an element bER such that

xz+b = xzb. Under 9, yxz+yb=yxzb becomes (yxz)9 = — (yb)9

+ (yxzb)9= —(yb)9 + (yb)9 = 0. Soyxz£A7and a contradiction. There-

fore xz cannot be r.q.r. In conclusion, if x has the property that

yx£(l,r for some y£A, then x£7. So for each element x£7, AxCZ$r,

i.e. AJC$r. Similarly JRC<lv (Note: this proof was suggested by a

result of Kertesz [2].)

Corollary 2.1. (a)  For a ring R, i>r and 3>j are ideals in R.

(b) For a ring R, J2Q<brC\$i.

(c) 7=(d>r: £) = (*,: R)

(d) For a ring R, xEJ iff i?Xi?£$rn$i.

Since in general both $r and $j are in J, it follows that in each

primitive ring the right ideals and the left ideals are $r- and <E>rfree

respectively. If the ring is a simple nonradical ring, then the ring is
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$-free. For the simple primitive rings, all three hold. And for a field

P,$(P) = (0).
In general $C£/. For example: let R he the ring of all linear trans-

formations of a vector space V with a denumerable basis. It is known

(e.g., see [3]) that R is a primitive ring and J= (0). Since R has unity,

N = R; and, in fact, the only proper ideal besides (0) is the ideal of

elements of finite rank. This ideal is 2V = $. Also note that$r=$i= (0).

Theorem 3. For a ring R having R2 = R,$ is a semiprime ideal.

Proof. Each maximal ideal is prime. If A is an ideal for which

A2Q$, then ^42 is contained in each maximal ideal M. So A is con-

tained in each M. Therefore iC$.

Corollary 3.1. For a ring R having R2 = R, the prime radical is

contained in $.

Corollary 3.2. For a ring R having R2 = R, JC$ iff J2C$.

Theorem 4. For a ring R having R2 = R and center Z, NDZC$r

and NDZQ&.

Proof. If A =NDZ<§&r and M is a maximal right ideal not con-

taining A, then R = A+M. This implies that M is a maximal ideal,

and R2 = R implies that R/M is a simple commutative nonzero ring.

Hence M is modular and NC.M implies that AQM. So iC$r.

Similarly NDZQ&.

Corollary 4.1. If R is a commutative ring and R2 = R, then /=$.

Theorem 5. For a ring R having R2 = R, $r=$; = /.

Proof. Consider <f>r and note that for 2?=$r and &rQJ implies that

J = $r. So then consider the case that $rC2? properly. By Theorem 2,

J2C*r. Form R/J2£^R* noting that J*£*JiR/J2)=J/J2 and that

$*^$r(2?/72)=$r//2. If xEJ* and x$$*, there exists a maximal

right ideal M* such that x(£M*. Under the natural 2?*-homomor-

phism 6 of R*—*R*/M*, R* is mapped onto a simple right 2v*-module

R*/M*. Since x<£M*, then J*6 = R*/M*. But J*2d=i0) implies that

R*/M* is annihilated by R*, i.e. iR*/M*)R*=iO). This contradicts

the hypothesis that R2 = R since, in turn, this implies that R*2 = R*

and iR*/M*)R* = R*/M*. So J*CM*. This leads to J*C$* and
hence /C$r. So the result follows.

Similarly $* = J.

Corollary 5.1 (L. Fuchs [l]). For a ring with unity, $r=$; = J.
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Theorem 6. 7/ R satisfies the d.c.c. on right ideals, then $=(0) if

and only i/ R is a direct sum o/ a finite collection o/ simple ideals.

Proof. Consider the intersections of all finite collections of maxi-

mal ideals. By the d.c.c. on right ideals, each linear system has a

minimal element, say D. If M is a maximal ideal, then D=D(~\M.

So T>C<|> and D = (0). As is known, if there exists in a ring a finite

number of maximal ideals M{ (4 = 1, ••-,«) with zero intersection,

then R is isomorphic to the direct sum of some or all the simple rings

R/Mi (i= 1, ■ ■ ■ , w). By (ix) each direct summand hasd>(A/M.) = (0)

since R/Mi is a simple ideal.

Again by (ix) the converse is evident.

Theorem 7. 7/ R is a ring with d.c.c. on right ideals, then both $r

and $i are contained in $.

Proof. The theorem is valid whenever A=<t>, so consider the case

that $ER properly. In particular restrict attention to R* = R/M

for a maximal ideal M. For either A*2=(0) or R*2 = R*, $*=(0).

Hence under the natural homomorphism 9 of R—>R*, $r^C(0) implies

that 4>rCil7. So 4>rC$ and similarly ^Ccp.

Theorem 8. 7/ R is a ring with the d.c.c. on right ideals, then $r

= $;=$.

Proof. Since $r is an ideal of R form A*=A/#r having $*

= $r(A*) = (0), <£>*S*£/<i>r and 7*^7/<£r. If M* is a maximal right

ideal such that **C£i7*, then A*=$* + Af*. However, since R*J*

C3>* = (0), then <£* is in the annihilator of M*. This implies that M*

is an ideal of R* and hence a contradiction to the assumption that

$*CAf*. So $* = (0), i.e. 4>C$rj and the result follows. Similarly,

Theorem 9. For a ring R with d.c.c. on right ideals and R not a

radical ring, then <£ = 7 4/ awd only i/ R2 = R.

Proof. Suppose R2 = R and there exists a maximal ideal M such

that JQM. Then under the natural homomorphism 9 of R-+R/M

= R*, J9 = R*. However, since J2C$CZM it follows that A*2=(0)

and this contradicts R2 = R. So 7C$. Since J = N and $C^N, then

$ = 7.
On the other hand, suppose that 7 = $CA properly. Form A/$

^R* and note that J*^J(R/$>) = (0) =d>*^rj,(^/$). As is known,

7*=(0) implies that A*2 = R*. If A2CR properly and R29 = R* under

the natural homomorphism 9 of R-+R*, then A=$+A2 = A2 and a

contradiction. So R2 = R.
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In a radical ring R the condition $ = / does not necessarily imply

that R2 = R. For example, let A be a zero ring having R+ a group of

type p". Then $(A) =$(A>+) =R+ and J = R.
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