NONGENERATORS OF RINGS

HOMER BECHTELL

The purpose of this note is to examine the role of nongenerators in the theory of rings, i.e. the elements x of a ring R such that for each subset M of R for which $R = \langle x, M \rangle$, then $\langle M \rangle = R$. The approach used considers a ring as a group with multiple operators and consequently an ideal A generated by a subset S implies that $S \subseteq A$. These results will include those of L. Fuchs [1] and A. Kertesz [2] whenever the ring has unity.

Unless otherwise indicated, the terminology and the necessary known results may be found in N. McCoy's text [3].

Denote the ideal (right ideal) generated by the set M of R by $\langle M \rangle$ $(\langle M \rangle_r)$.

DEFINITION. An element $x \in A$ is a generator of an ideal (right ideal) A in a ring R provided that there is a subset M of A such that $A = \langle x, M \rangle$ $(A = \langle x, M \rangle_r)$ and $\langle M \rangle \subset A$ $(\langle M \rangle_r \subset A)$ properly. Otherwise x is called a *nongenerator* of A. (Note that M may be empty.)

The set of nongenerators of an ideal (right ideal) A in a ring R will be denoted by Φ (Φ_r), respectively.

Immediate consequences of the definition are the following:

(i) For an element x of a ring R, $x \in \Phi$ ($x \in \Phi_r$) if and only if $\langle x \rangle \subseteq \Phi$ ($\langle x \rangle_r \subseteq \Phi_r$).

(ii) In a ring R, Φ is an ideal and Φ_r is a right ideal.

Throughout this paper a maximal ideal of a ring R will be a proper ideal of R that is not contained in another proper ideal of R. Similarly for maximal right (left) ideals.

(iii) In a ring R, Φ (Φ_r) is the intersection of the maximal ideals (right ideals), if they exist, and is R otherwise.

(iv) For a ring R and homomorphism θ of R, $\Phi\theta \subseteq \Phi(R\theta)$ and $\Phi_r\theta \subseteq \Phi_r(R\theta)$.

(v) For an ideal A of a ring R, $A \subseteq \Phi$ implies that $\Phi(R/A) = \Phi/A$ and $A \subseteq \Phi_r$ implies that $\Phi_r(R/A) = \Phi_r/A$.

(vi) For a ring R, if A is an ideal (right ideal) of R, then $\Phi(A) \subseteq \Phi(\Phi_r(A) \subseteq \Phi_r)$.

(vii) In a ring R, $\Phi = (0)$ ($\Phi_r = (0)$) implies that $\Phi(A) = (0)$ ($\Phi_r(A) = (0)$) for each ideal (right ideal) A of R. Such rings will be called Φ -free or Φ_r -free respectively.

Received by the editors December 4, 1966.

(viii) In a ring R, $A = \Phi(A)$ $(A = \Phi_r(A))$ for an ideal (right ideal) A of R implies that $A \subseteq \Phi$ $(A \subseteq \Phi_r)$.

(ix) If R is a ring and $R = M_1 \oplus \cdots \oplus M_n$, then $\Phi = \Phi(M_1) \oplus \cdots \oplus \Phi(M_n)$ for ideals M_i of R.

(x) In a ring R, if A is a minimal ideal (right ideal) such that $A \subseteq \Phi$ ($A \subseteq \Phi_r$), then there exists a maximal ideal (right ideal) B such that $R = A \oplus B$.

(xi) If R is a zero ring $(R^2 = (0))$, then $\Phi = \Phi(R^+)$, $\Phi(R^+)$ the Frattini subgroup of the additive group R^+ .

In the remaining portion of this note, the Jacobson radical and the upper Baer radical will be denoted by J and N respectively.

THEOREM 1. In a ring R, $\Phi_r \subseteq J$ and $\Phi \subseteq N$.

PROOF. If $J \neq R$, then J is the intersection of the modular maximal right ideals of R; and if $N \neq R$, then N is the intersection of the modular maximal ideals.

Note that in Theorem 1 equality may not occur as the ring $\{0, 2; mod 4\}$ exemplifies.

THEOREM 2. In a ring R, $RJ \subseteq \Phi_r$ and $JR \subseteq \Phi_l, \Phi_l$ denoting the set of nongenerators with respect to left ideals.

PROOF. Since the result follows if $\Phi_r = R$, consider the case that $\Phi_r \subset R$ properly. Suppose there is an element $x \in R$ such that $yx \notin \Phi_r$ for some element $y \in R$. Then there exists a maximal right ideal M such that $yx \notin M$. M defines a simple right R-module $R/M \cong R^*$, and under the natural R-homomorphism θ of $R \to R^*$, $y\theta \neq 0$ and $(yx)\theta \neq 0$. So $(R^*)R = R^*$, and an element $z \in R$ exists such that $(yxz)\theta = y\theta$. Then note that if xz is r.q.r., there exists an element $b \in R$ such that xz+b=xzb. Under θ , yxz+yb=yxzb becomes $(yxz)\theta = -(yb)\theta + (yzb)\theta = -(yb)\theta + (yb)\theta = 0$. So $yxz \in M$ and a contradiction. Therefore xz cannot be r.q.r. In conclusion, if x has the property that $yx \notin \Phi_r$ for some $y \in R$, then $x \notin J$. So for each element $x \in J$, $Rx \subseteq \Phi_r$, i.e. $RJ \subseteq \Phi_r$. Similarly $JR \subseteq \Phi_l$. (Note: this proof was suggested by a result of Kertesz [2].)

COROLLARY 2.1. (a) For a ring R, Φ_r and Φ_l are ideals in R.

(b) For a ring R, $J^2 \subseteq \Phi_r \cap \Phi_l$.

(c) $J = (\Phi_r; R) = (\Phi_l; R)$

(d) For a ring R, $x \in J$ iff $R \times R \subseteq \Phi_r \cap \Phi_l$.

Since in general both Φ_r and Φ_l are in J, it follows that in each primitive ring the right ideals and the left ideals are Φ_r - and Φ_l -free respectively. If the ring is a simple nonradical ring, then the ring is

 Φ -free. For the simple primitive rings, all three hold. And for a field $F, \Phi(F) = (0)$.

In general $\Phi \subseteq J$. For example: let R be the ring of all linear transformations of a vector space V with a denumerable basis. It is known (e.g., see [3]) that R is a primitive ring and J = (0). Since R has unity, N = R; and, in fact, the only proper ideal besides (0) is the ideal of elements of finite rank. This ideal is $N = \Phi$. Also note that $\Phi_r = \Phi_l = (0)$.

THEOREM 3. For a ring R having $R^2 = R$, Φ is a semiprime ideal.

PROOF. Each maximal ideal is prime. If A is an ideal for which $A^2 \subseteq \Phi$, then A^2 is contained in each maximal ideal M. So A is contained in each M. Therefore $A \subseteq \Phi$.

COROLLARY 3.1. For a ring R having $R^2 = R$, the prime radical is contained in Φ .

COROLLARY 3.2. For a ring R having $R^2 = R$, $J \subseteq \Phi$ iff $J^2 \subseteq \Phi$.

THEOREM 4. For a ring R having $R^2 = R$ and center Z, $N \cap Z \subseteq \Phi_r$ and $N \cap Z \subseteq \Phi$.

PROOF. If $A = N \cap Z \oplus \Phi_r$ and M is a maximal right ideal not containing A, then R = A + M. This implies that M is a maximal ideal, and $R^2 = R$ implies that R/M is a simple commutative nonzero ring. Hence M is modular and $N \subseteq M$ implies that $A \subseteq M$. So $A \subseteq \Phi_r$. Similarly $N \cap Z \subseteq \Phi$.

COROLLARY 4.1. If R is a commutative ring and $R^2 = R$, then $J = \Phi$.

THEOREM 5. For a ring R having $R^2 = R$, $\Phi_r = \Phi_l = J$.

PROOF. Consider Φ_r and note that for $R = \Phi_r$ and $\Phi_r \subseteq J$ implies that $J = \Phi_r$. So then consider the case that $\Phi_r \subset R$ properly. By Theorem 2, $J^2 \subseteq \Phi_r$. Form $R/J^2 \cong R^*$ noting that $J^* \cong J(R/J^2) = J/J^2$ and that $\Phi_r^* \cong \Phi_r(R/J^2) = \Phi_r/J^2$. If $x \in J^*$ and $x \notin \Phi_r^*$, there exists a maximal right ideal M^* such that $x \notin M^*$. Under the natural R^* -homomorphism θ of $R^* \to R^*/M^*$, R^* is mapped onto a simple right R^* -module R^*/M^* . Since $x \notin M^*$, then $J^*\theta = R^*/M^*$. But $J^{*2}\theta = (0)$ implies that R^*/M^* is annihilated by R^* , i.e. $(R^*/M^*)R^* = (0)$. This contradicts the hypothesis that $R^2 = R$ since, in turn, this implies that $R^{*2} = R^*$ and $(R^*/M^*)R^* = R^*/M^*$. So $J^* \subseteq M^*$. This leads to $J^* \subseteq \Phi_r^*$ and hence $J \subseteq \Phi_r$. So the result follows.

Similarly $\Phi_l = J$.

COROLLARY 5.1 (L. FUCHS [1]). For a ring with unity, $\Phi_r = \Phi_l = J$.

THEOREM 6. If R satisfies the d.c.c. on right ideals, then $\Phi = (0)$ if and only if R is a direct sum of a finite collection of simple ideals.

PROOF. Consider the intersections of all finite collections of maximal ideals. By the d.c.c. on right ideals, each linear system has a minimal element, say D. If M is a maximal ideal, then $D = D \cap M$. So $D \subseteq \Phi$ and D = (0). As is known, if there exists in a ring a finite number of maximal ideals M_i $(i=1, \dots, n)$ with zero intersection, then R is isomorphic to the direct sum of some or all the simple rings R/M_i $(i=1, \dots, n)$. By (ix) each direct summand has $\Phi(R/M_i) = (0)$ since R/M_i is a simple ideal.

Again by (ix) the converse is evident.

THEOREM 7. If R is a ring with d.c.c. on right ideals, then both Φ_r and Φ_l are contained in Φ .

PROOF. The theorem is valid whenever $R = \Phi$, so consider the case that $\Phi \subset R$ properly. In particular restrict attention to $R^* = R/M$ for a maximal ideal M. For either $R^{*2} = (0)$ or $R^{*2} = R^*$, $\Phi_r^* = (0)$. Hence under the natural homomorphism θ of $R \to R^*$, $\Phi_r \theta \subseteq (0)$ implies that $\Phi_r \subseteq M$. So $\Phi_r \subseteq \Phi$ and similarly $\Phi_l \subseteq \Phi$.

THEOREM 8. If R is a ring with the d.c.c. on right ideals, then $\Phi_r = \Phi_l = \Phi$.

PROOF. Since Φ_r is an ideal of R form $R^* \cong R/\Phi_r$ having $\Phi_r^* = \Phi_r(R^*) = (0)$, $\Phi^* \cong \Phi/\Phi_r$ and $J^* \cong J/\Phi_r$. If M^* is a maximal right ideal such that $\Phi^* \subseteq M^*$, then $R^* = \Phi^* + M^*$. However, since $R^*J^* \subseteq \Phi_r^* = (0)$, then Φ^* is in the annihilator of M^* . This implies that M^* is an ideal of R^* and hence a contradiction to the assumption that $\Phi^* \subseteq M^*$. So $\Phi^* = (0)$, i.e. $\Phi \subseteq \Phi_r$, and the result follows. Similarly, $\Phi_l = \Phi$.

THEOREM 9. For a ring R with d.c.c. on right ideals and R not a radical ring, then $\Phi = J$ if and only if $R^2 = R$.

PROOF. Suppose $R^2 = R$ and there exists a maximal ideal M such that $J \subseteq M$. Then under the natural homomorphism θ of $R \rightarrow R/M$ = R^* , $J\theta = R^*$. However, since $J^2 \subseteq \Phi \subseteq M$ it follows that $R^{*2} = (0)$ and this contradicts $R^2 = R$. So $J \subseteq \Phi$. Since J = N and $\Phi \subseteq N$, then $\Phi = J$.

On the other hand, suppose that $J = \Phi \subset R$ properly. Form $R/\Phi \cong R^*$ and note that $J^* \cong J(R/\Phi) = (0) = \Phi^* \cong \Phi(R/\Phi)$. As is known, $J^* = (0)$ implies that $R^{*2} = R^*$. If $R^2 \subset R$ properly and $R^2\theta = R^*$ under the natural homomorphism θ of $R \to R^*$, then $R = \Phi + R^2 = R^2$ and a contradiction. So $R^2 = R$.

In a radical ring R the condition $\Phi = J$ does not necessarily imply that $R^2 = R$. For example, let R be a zero ring having R^+ a group of type p^{∞} . Then $\Phi(R) = \Phi(R^+) = R^+$ and J = R.

BIBLIOGRAPHY

1. L. Fuchs, A remark on the Jacobson radical, Acta Sci. Math (Szeged) 14 (1952), 167-168.

2. A Kertesz, A characterization of the Jacobson radical, Proc. Amer. Math. Soc. 14 (1963), 595-597.

3. N. McCoy, The theory of rings, Macmillan, New York, 1964.

UNIVERSITY OF NEW HAMPSHIRE