
A PROBLEM ON PARTITIONS CONNECTED
WITH WARING'S PROBLEM

sh6 iseki1

1. Introduction. Let k, s be fixed positive integers, and n an arbi-

trary positive integer. Then we denote by R(n) the number of repre-

sentations of « as a sum of s ^th powers of positive integers; that is,

R(n) is the number of solutions (xi, x2, • • • , xs) of the Diophantine

equation

k k k
(1) » = xx + Xi + ■ ■ ■ + x,       (xi positive integers),

solutions differing only in the order of the Xi being counted as distinct.

Hardy and Littlewood discovered the famous asymptotic formula

T«(l + 1/k)
(2) R(n) = —-— ©(m);*"*-1 + o(n'ih-1)        (n -» °o),

T(s/k)

where <S(w) is the 'singular series', and Hua [3] proved that (2) holds

for 5^24 + l. An elegant and short proof of Hua's theorem was pub-

lished, in 1948, by Estermann [2]. A more powerful method, however,

was developed by Vinogradov, who showed that (2) holds for

s^ [10&2 log k] provided 6^12 (see [7, Chapter VII]).

We have reckoned the number R(n) considering the order of the xt.

If, however, we count the number of solutions of (1) without regard

to the order of the summands, we get a problem of partitions. This

problem seems to be open except for k = l. When k = l, on the other

hand, there is a considerable literature on the problem (see H. Ost-

mann [5, p. 52], G. J. Rieger [6]).

The main purpose of the present paper is to establish the following

theorem.

Theorem 1. Let P(«) denote the number o/ partitions o/ a positive

integer n into s kth powers o/ positive integers. Then, /or s^2* + l

(k^2) or 5^ [10/fe2 log k] (fe^l2), we have

r*(i + 1/k)
(3) P(n) = —-— ©(ffV*-1 + <?(«"*-•)        (« -> oo).

s\T(s/k)

Comparing (3) with (2), it is observed that the only difference of
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the main term of P(n) from that of 2?(«) is 5! in the denominator.

It may also be noted that our conditions on 5 for the validity of (3)

are identical with those of Hua and of Vinogradov mentioned above.

2. Henceforth we assume that k Si 2 and 5 Si 2. First, we define Riin)

as the number of solutions of (1) in which xi, x2, • • • , x, are distinct,

and 2?2(m) as the number of solutions in which at least two of the x,-

are equal, the order of the x, being relevant in each case. Then clearly

(4) Rin) = Riin) + 2?2(»).

Secondly, we regard (1) as a partition of n, and, corresponding to the

above, define Pi(w) as the number of partitions in which Xi, x2, • • • ,

xs are distinct, and P2(m) as the number of partitions in which at

least two of the X; are equal, the order of the xt being, of course, irrele-

vant. Then we have also

(5) P(m) = Piin) + P2in).

Moreover, it easily follows that

(6) Riin) = s\Piin),

(7) P2in) = R2in) =s\Piin)/2l

Suppose now that (2) holds for some 5 and further that

(8) R2in) = oin'ix-1).

Then we have, by (4),

r»(i + i/k)
(9) Riin) = —--©(wV*-1 + (Km"*-1),

Tis/k)

and, by (7),

(10) P2in) = ^(m"*-1).

Therefore, we infer from (5), (6), (9), and (10)

T'il + 1/k)
(3) Pin) = -— ©(m)w8/*-1 + oin*ik~l),

s\Tis/k)

that is, (3) follows from (2) and (8). Conversely, we can show that (8)

follows from (2) and (3). Indeed, we obtain, from (4), (5), (6), and (7),

slPin) - Rin) = slPiin) + s\P2in) - R^n) - 2?2(w)

= s\P2(n) - R2in) S: 2R2{n) - 2?2(») = /?,(«).
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The left-hand side of this inequality is oinslk~1) by (2), (3); and hence

(8) follows. Consequently we have the following lemma.

Lemma 1. (3) and (8) are equivalent expressions for those values of s

for which (2) is valid.

3. It would be difficult, however, to calculate R2in) precisely, and

so we employ the following method:

If Qin) denotes the number of solutions of (1) (considering the

order of the summands) in which Xi = x2 holds, then obviously

/■ ao+l
T"~2ici)Tii2a)ei — na)da        (a0 any real number),

where

p

Tia) = zZ e(ax*),     P = W'k],
x=l

Pi

Tiia) = 2 «(«**).    pi = [in/2yik];    «(*) = e2™.
x=l

More generally, it will be seen easily that Qin) equals the number of

solutions of (1) in which x,=x, for any fixed numbers i,j ii^j) holds.

Since there are 5!/2!(5 —2)! such pairs ii, j) taken from 1, 2, • • ■ ,5,

we obtain

(12) ew^i,(«)^Qew.

From (12) it follows that (8) is equivalent to

Qin) = oin'lk-1).

4. The number Qin) can be treated by analytic methods similar to

those developed for Waring's Problem. In the first place, we shall fol-

low the pattern of Estermann's version [2] of Hua's paper [3];

next we adopt Vinogradov's method to obtain a sharper result for

large k.

Let a, q he any pair of integers such that l^a^q, (a, q) = l. We

write Iia, q) for the interval ia—a0)/q^a^ ia+a0)/q where 0<a0<§.

Let cbea real number satisfying

(13) 1 < v < (2a0)-1.

Then it will be verified by a slight calculation that the intervals 2(a, q)

with q-=v are nonoverlapping, and hence, by (11),
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Q(n) =   E    T,J(a,q) + f T>-*-(a)Ti(2a)e(-na)da

= Q*(n) + Q**(n),

say, where

J(a,q)=f       T>-\oL)Ti(2a)e(-na)da,

and E is the set of those numbers of the interval a0^a!<l which do

not belong to any 7(a, q) with q^v.

Assume now that we have an estimate for T(a) such that

(14) T(a) «P1-"        (aEE,P = p(k) > 0)

and also that

(15) f   | T(a) \lda« P'-x+t       (5 = 5(k) > 0)
Jo

where t = t(k) is some positive integer. Then we obtain, for s^/ + l,

Q**(n) « p(-«-»a-p)  f   | T(a) I'"11 71(2a) | da.
^ o

Here, by Holder's inequality (noting the periodicity of Ti(a)),

f   | T(a) I'-1 | Ti(2a)\da

=£(J     \T(a)\<da)       (J     | T-iWl'^J     ,

and the right member is, by (15), <<CP(_i+5. Hence we get the follow-

ing estimate:

(16) Q**(n) « P'-fc-M,

where

(17) »»-l-J + (*-i- l)p.

If we can prove that ju>0 for s^5i(&), it then follows from (16) that

(18) Q**(n) = ofr""-1),

provided s^si(k).

Now let us first put v = n1Kik) and a0 = v/n. Then (13) is fulfilled

whenever «^ 3. (14) and (15) are also valid with p = 2~k~1 — e, t = 2k~1,

and 5 = l+e (see  [2, Lemmas 7, A(m = k — 1)]), where e is an arbi-
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trarily small positive number. Hence when 5Si5i(&) =2i_1 + 2, we

have, by (17),

M = _ € + is - 2*-1 - 1)(2"*-1 - e) Si 2~k~l - 2e > 0,

and therefore (18) holds. We now discuss 0/*(m). It will be seen that a

crude estimate for Q*in) is sufficient for our purpose. Using the trivial

inequalities: | Tia)\ gP, | Ti(2a)| ^Pi<P, we find that

I J(a, °) I   <   f       P'-'da = 2a0q-1P"-1 = 2vn-lq-1P'-\
J Ha.q)

from which it follows that

JI  zZJ(a,q)   <2m~1P'-1  X)     zZ ?_1 ̂  2vin~1P-1

^   2n2l(ik)+(s-l)lk-l   —   2W«M-1-1/(2A)_

Thus, Q*in) = oin"lk~1), and so finally Qin) = oin""1-1) provided

5Si2*-1 + 2.

We next turn to Vinogradov's treatment to obtain a better result

for large k. We put v = P1~llh, ao=i2k)~1Pl~k. These values again

satisfy (13). By virtue of Vinogradov's results [7, Chapter VII], we

see that both (14) and (15) hold with p= (3£(&-l) logiUk2))-1,

t = 2bim + h), and o = \kik + l)o, where £Sil2, b= \\k + \], h = k + 2,
<r= (1 — l/£)m, and m is any fixed integer greater than k. Let us

now take

rlog(0.5£(£ + 1))        1
m =-h 1   ,

L-log(l-lA) J'

which ensures that er<(0.5&(& + l))_1, whence we get 5<1. If s^t + 2

= 2b(m+h)+2, we have therefore p > (5 — t — l)pSip>0. Now a simple

calculation shows that

2bim + h) < 5k2 log k + 2.5(1 - log 2)k2 + Ilk + 3

< 6/fe2log/fe - 2        ik Si 12).

Hence if 5Si5i(&)= [6k2 log k], we obtain 5>6&2 log k — 1 >2b(m + h)

+ 1, so that s^2bim + h)+2; and thus (18) holds. There is no diffi-

culty in dealing with Q*in) if we utilize an analysis analogous to that

given in [7, Chapter III] (cf. Davenport [l, pp. 50-51]); indeed we

can deduce that

Q*in) = OOP"-1"*) = oin'i"-1).
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Consequently we have Q(n) =o(n*lk-~1), provided that s^t [6k2 log k]

(fe^l2).
The above arguments, together with (12), yield the following the-

orem.

Theorem 2. Let R2(n) denote the number o/ representations o/ n as a

sum o/ s kth powers of positive integers where not all of the summands

are distinct. Then, for s^2*"1 + 2 (k^2) or s^[6k2logk] (£^12),

we have

(8) Ri(n) = o(tfi"-1).

In particular, if s^2*+l, then (8) is valid since 2* + l >2*-1 + 2

(£3:2) and also (2) holds by Hua's theorem. A similar argument

applies to the case sS; [10&2 log k]. This proves Theorem 1 on account

of Lemma 1.

Remark. It is noteworthy that the number 2*_1 + 2, appearing in

Theorem 2, is comparatively small for small values of k (see the table

below). It is interesting to see that the values of 2*-1 + 2 for 3^£^6

are respectively less than the best known upper bounds for G(k)

(i.e. G(3)g7, G(4) = 16, G(5)^23, G(6)g36). As regards the case
k = 2, a slightly better result than that of Theorem 2 holds; we have,

in fact,

R2(n) = 0(w<8-3>/2+<)

for 5^3   (cf.  Landau   [4, Theorem  204],  Evelyn  and  Linfoot   [8,

Lemma 2.2]).

k 234567 8 9 10

2*^+2        4        6 10 18        34 66 130        258 514

2* + l 5 9 17 33 65 129 257 513 1025

5. Professor H. Davenport has raised (private communication)

the following question:

If G0(k) denotes the least value of s0 such that the Hardy-Littlewood

formula (2) holds2 for s^s0, then does the formula (3) hold as well

for s^G0(k)?

2 In order that (2) may be an asymptotic formula for R(n), it should be required that

®(n)^c(k, s)>0 for all sufficiently large n, and also we have Go(k)^G(k). Thus

G0(2) = 5, though when k = 2 and 3gjsg8, we have exact formulae for the number of

solutions of (1) if we allow the Xi to be zero or negative integers (see [9]). The value

of Go(k) is not known for k>2.
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After Lemma 1 and (12), this problem amounts to determining

whether Qin) = o(w8'*-1) holds for s = Goik).

The author is unable to solve this problem completely, and we shall

give here a less satisfactory answer as follows:

Formula (3) is true if s = Goik)+2.

The proof of this is easy. For we have, if 5SiG0(fc) + 2,

Pi pi

Qin) = zZR(n- 2xk, 5 - 2) « £ (» - 2x*) fr-»/*-i+.
i=i i=i

/' ("l»1,kin - 2xA)Cs-2>/*-1+edx«Mt8-1)/*-1+%

o

and thus Qin) = oinslk~1), where 2?(m, 5 — 2) denotes the number of

solutions of (1) with 5 — 2 summands in place of s, and where we have

used the fact that the singular series ®(m), appearing in (2), is subject

to the estimate O(m') for s>k. (Actually, we can prove, by using the

results [4, VI, Chapter 2, §§2, 4], that ©(w) = 0((loglogw)<!)

(c = c(&)>0) when 5 = & + l and @(m)=0(1) when s>k + l, provided

k = 3.)
As Qin) is the number of solutions of

2xi + x3 + ■ ■ ■ + xs = n,

which has 5 — 1 variables, it is known that Qin) satisfies an analogous

asymptotic formula (see [3], [l, Theorem 4]), namely

r'-^l + 1/k)
Qin) = 2~1'k-— ©jfwW*-1)/*-1 + o(ra<«-i>«-i).
V TUs - l)/k) V '

It seems probable that this formula is also valid for 5—lSiG0(/fe),

in agreement with formula (2). If this is true, we should have

Qin) = 0(m('-1>/*-1+«) = oinslk~l)

for 5SiGo(&) + l, which extends the validity of (3) to s = G0ik) + l.

It is quite possible3 that Qin) =o(ws/i_1) holds for 5SiGo0fe) or more

values of 5, giving thereby an affirmative answer to our question. But

this conjecture seems difficult to prove unless the actual value of

Goik) is known.

It should be referred to in this connection that Hardy and Little-

wood [10, p. 4] had introduced the 'Hypothesis K' which asserts that

Rin, k) = Oin') for every positive e. Although this hypothesis has

3 See the remark at the end of §4.
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proved false when k = 3, it is still plausible that one has at any rate

R(n, k) =o(nllk), which is much weaker than Hypothesis K and may

be compared with Q(n) = o(n*lk~1) where s = k + l. If the estimate

Q(n) = o(n"lk~1) is valid when s = k + l, it may be shown by an elemen-

tary argument that the same estimate holds generally for s^k + 1.

We are thus led to state the following

Conjecture. Let Q(n, k) (ks±3) denote the number of solutions of

k k k

2yi + y2+ ■ ■ • + yk = n

in positive integers y,-. Then Q(n, k) = o(n1,k).
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