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1. Introduction. The notion of an w-ordered set, introduced in [3],

allows a drastic reduction in the number of axioms usually employed

to characterize Euclidean 3-geometry. (This number varies for the

different systems: Hilbert, 21; Veblen-Hilbert, 18; Borsuk-Szmielew,

27; Huntington, 26. The so-called metric systems involve the notion

of real number which requires several additional axioms for its

definition.)

The simplification carried out in this paper is possible because two

of the axioms, Pi and P2, have deep consequences which condense

almost all of the usual notions of incidence and order of other sys-

tems.

The questions concerning independence of the axioms are not

touched here. Also left aside are the interesting pedagogical possi-

bilities of the system.

The generalization to M-dimensions seems to be straightforward.

2. The axioms. The first four axioms characterize a notion of

3-order on a set 8. This means there is a relation defined on the set of

tetrads (ordered sequences of four points of S) which satisfies Pi

through P4. It is more convenient to define this relation using a char-

acteristic function <p, which is defined on SXSXSXS and takes values

in the set [—1,0, 1}. For brevity we write:

4>iAi, Ai, Ai, Ai) = (Ai, Ai, A3, A4)    for Ai E S.

(The reader is referred to [3] for the basic definitions and results.)

Pi. If AiE&, i=l,2,3, 4, then:

(Ai, Ai, A3, Ai) = (A2, A3, Ai, Ai) = - (A2, Au As, Ai).

Pi implies that </> is defined on the classes of ordered tetrads. Two tetrads

being equivalent if they are permutations of the same type.

P2 (Exchange axiom). If (Bu A2, A3, Ai)(Ai, B2, B3, Bi),

(B2, Ai, A3, Ai)(Bi, Ai, B3, Bi), {Bt, A2, A3, At)(Blt B2, Ax, Bi), and

(Bi, A2, A3, Ai)(Bi, B2, B3, Ai) are all nonnegative then:

(Ai, A2, A3, Ai)(Bu B2, B3, Bi) ^ 0.

In this axiom, one element, Ai, of the first tetrad, is interchanged
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with all the elements of the second tetrad, maintaining the order.

The element Ai has no special significance, since, by Pi, any element

can be brought to occupy the first place.

P3. The 3-order of S is nontrivial, i.e.: for some tetrad {Ai, A2, A3, At)

^0.
Di. The point ^4i, is said to be singular if for every tetrad which

contains it:

(Au A2, As, At) = 0.

Analogous definitions for singular pairs and triples. In particular, a

tetrad (-4,-) is singular if (Ai, A2, A3, Ai) = 0.

D2. Given a nonsingular pair (A, B) the line AB is the set l(A, B)

= {X; (A, B, X) is singular}.

Given a nonsingular triple (A, B, C), the plane ABC is the set

ir(A,B,C)={X;(A, B, C, X) is singular}.

D3. ir (A, B, C) is said to separate X and F if

(A,B,C,X)^(A,B,C,Y).

P4. If the pair (A, B) is singular, then A=B.

P5. If ir(A, B, C) separates X and Y, then

t(A,B,C)C\1(X, Y) 5=0.

Our sixth axiom is the parallel's axiom in Playfair's form.

P6 (Parallel's axiom). If P(£l(A, B) there is one unique line I'

in ir(A, B, P) which does not meet l(A, B). (V is said to be parallel to I.)

D4. Given a point P not in the plane ir(A, B, C) one relative 2-order

of ir (A, B, C) is defined by

(X, Y, Z) = (P, X, Y, Z)    for X, Y, Z E *"•

In [3] it was proved that this notion is independent of P save for

reversings of the order and that there are two natural induced 2-

orders on every 7r£S.

In a similar manner, the 1-orders on the lines are defined. Given Q,

not on /, we put: (X, Y) = (Q, X, Y), for X, YEI Again this notion

is independent of the point Q and there are two natural 1-orders on

every line.

D6. An upper bound K of a set {Xa}El for the relative 1-order

( , ) of the line /, is a point K which satisfies: (K, Xa)^0 for every a.

Similar definition for lower bound.

A least upper bound of a subset S of / is a lower bound of the set of

all upper bounds of S which is itself an upper bound of S.

P7. Every line of S is conditionally complete in any of its relative
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orders i.e.: every subset of it which has an upper bound has also a least

upper bound.

As will be proved in the sequel, the above axioms characterize the

real affine space of three dimensions. It only remains to add suitable

axioms to especialize to Euclidean geometry. One way to accomplish

this would be to add congruence axioms, but since our goal is to keep

the number of axioms at a minimum, we prefer to introduce, with our

last three axioms, the notion of "orthogonality" between a line / and

a plane w, denoted by / -br. A definition and some notation is needed.

De. A plane is said to be parallel to a line if they do not intersect.

The symbol l//ir will be used to mean that either 1 is parallel to ir

or lEf. Similarly ////' means that I is identical or parallel to /'.

Now the final axioms:

Ps. If I J-7T then l//ir is not true.

Pg. Given a point, P, and a plane, ir, then, for some line I: I J-ir,

and PEL
Pio. If I -Ltt and I' Lit' then l//w'=>l'//ir.

3. The incidence structure. We prove, in first place, that Hilbert's

connection (incidence) axioms hold in our system. (See [2, p. 4].) Let

S be a 3-ordered set satisfying Pi through Pi0. The definition of

1{A, B) in the previous section, together with P4, show that there is

one line through A and B. The uniqueness of this line, and the fact

that any two distinct points of it determine the same line, follow from

the following theorem:

Ti. Let C^D be on 1{A, B). Then, 1{A, B) =1{C, D).
Proof. Let XEKA, B) and consider the triples (A", C, D) and

{A, B, Q) where Q<£liA, B). In any relative order of iriA, B, Q)

apply P2 (exchanging Q) to show (X, C, D)(A, B, 0 = 0. Hence

(X, C, D) = 0 or equivalently, XEKC, D). Similarly for the opposite

inclusion. Notice that we use P3 implicitly in this proof.

In a similar way, the existence and uniqueness of a plane through

three points is established. Also the fact that any three noncollinear

points on a plane determine it.

That a line which has two points on a plane is contained in it, fol-

lows from our definitions of lines and planes. Also these definitions,

together with P3, imply that there are at least two points on every

line, three noncollinear points on every plane and four noncoplanar

points in 8.

So, it only remains for Hilbert's I, 6 of [2] to be proved. This axiom

reads:

T2. If two planes a, fi, have a point A in common, then they have at

least a second point in common.
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To prove this we need some preparation. First we show that axiom

P5 holds in the planes with their relative orders.

T3. 7ra awy relative order of a plane ir, if

(Ai, A2, X) 7* (Ai, A,, Y)   then   l(X, Y) (~\ l(Ah A2) 5= 0.

Proof. The given inequality means that for some PEir

(P, Ai, A2, X)^(P, Ai, A2, Y). Hence, by P6, l(X, Y) meets

ir(Ai, A2, P). But TrC\ir(Ai, A2, P)=l(Ai, A2) and this proves the

theorem.

Ci. If l(A, B)l/V, then for any X, YEV:

(A, B, X) = (A, B, Y).

C2. Given four points A, B, X, Y in a plane ir. If l(A, B)//l(X, Y)

andl(A,X)//l(B, Y) then:

(A,B,X)=(X,B,Y).

Proof. By the preceding corollary:

(A,B,X) = {A,B,Y)=(X,B,Y)

T4. Let ir = ir(A, B, Z) meet line l = l(Z, M) in Z and l(£.ir. Then

there are at least two points X and Y in I stick that:

(X, A,B,Z) = - (F, A, B, Z) 9± 0.

Proof. Consider the parallels to l(M, A) and to l(M, Z) through

Z and A respectively. Let them meet at T. Then by C2: (M, A, Z)

= (Z, A, T)^0 in the ordered plane 7r(A7, A, Z). The parallel to AZ

through T will meet lata point Y and by O: (Z, A, T) = (Z, A, Y)

and therefore: (M, A, Z) = {Z, A, Y). It follows that for any point,

say B:

(M, A,B,Z) = (Z,A,B,Y) = - (Y, A, B, Z) ^ 0.

Putting X = M we get the theorem.

Now we can prove Hilbert's I, 6:

T6. If the two planes ir(Z, B, C) and ir'(Z, N, P) have a common

point Z, they have another one, W.

Proof. On l(Z, B) and l(Z, C) take four points X, Y, X', Y',

furnished by the previous theorem, so that:

(X, Z, N,P)= - (Y, Z, N, P) * 0; X, Y, E l(Z, B) C t(Z, B, C),

(X', Z, N,P)= - (Y\ Z, N, P) * 0; X', Y', E l(Z, C) C ir(Z, B, C).

Choose a pair from those four points, say U, V, which belong to

different lines, and such that:



150 L. G. NOVOA [February

(U, Z, N,P)= - (V, Z, N, P) * 0.

By P6, liU, V)DiriZ, N, P) ^Q. Let A be a point in that intersection.

Then X is clearly different from Z, otherwise Z, B, C would be col-

linear. The proof is complete.

We have thus proved that all the axioms of connection of the Hil-

bert system are valid in 8.

Theorem T4 implies the existence of points on 1{P, Q) exterior to

the segment PQ as the following corollary shows:

C3.  On  the line / = /(P,  Q) there is a point R such that  (P,  Q)
= {Q,R).

Proof. Take a plane iriQ, A, B) which does not contain / (the

existence of it is guaranteed by P3) and apply T4.

We can also prove the existence of a point SEl interior to PQ i.e.:

(P, S) = (S, Q). For this case we use one of the forms of Desargues'

theorem, which holds in any plane it of 8 because its proof depends

on the fact that w is imbedded in 8.

We show first:

T6. IfPLQMis a parallelogram iin an obvious sense) and R = /(P, Q)

DliL, M) then: (P, R) = {R, Q). {The existence of R is guaranteed by

T3 and C2.)

Proof. Let LS//PQ and SQ//LM. Then (by Desargues) it follows

that RS//PL. Applying C2:

(P, R, L) = (R. S, L) = (L, Q, S) = (R, Q, L)

or (P, R, L) = {R, Q, L) which proves the theorem.

T7. Given P and Q, there is some REliP, Q) such that  (P, R)
= (R, Q).

Proof. Obviously, a parallelogram can be constructed with PQ as

a diagonal. Then apply T6.

4. Imbedding in the real projective 3-space. The easiest way to

complete the proof is as follows. We imbed 8 into a space <P by the

well-known method of adjoining the ideal elements to 8. This induces

an incidence structure on <?. A separation order is then defined on (P

and it is shown that, under these conditions, (P is the real projective

3-space. Finally it is proved that the orthogonality axioms define an

elliptic polarity on the ideal plane.

We shall give only a sketch of this proof, leaving the details to the

reader.

Assume we add to 8 the set 3 of ideal points (i.e. maximal families

of parallel lines) to get (P = 8US. It is well known that, in our case,

with the usual definitions, (P is a Desarguesian projective 3-space.
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We take any categorical axiom system for the real projective 3-space,

for instance [l, pp. 20-23]. The incidence axioms are automatically

satisfied and need not be checked.

D7. The separation or der-function on a line I of S is the function:

a (A, B, C, D) = (A, C)(A, D)(B, C)(B, D) where A, B, C, D are
four distinct points on the line I and ( , ) denotes any relative order

of /. (It is clear that this function is independent of which order we

use.) This function is extended to the ordinary lines of (P by defining:

<x(A, B, C, fi) = <r(A, B, fi, C) = a(C, fi, A, B) = o-(fi, C, A, B)

= (A, C)(B, C)

where Q. is the ideal point of /.

To extend it to the ideal lines we observe first:

T8. If A, B, C, D are distinct points on the line /££, Q any point in

— /, and X any point on &CM(Q, A) different from Q then:

a(A, B, C, D) = (Q, X, C)(Q, B, C)(Q, X, D)(Q, B, D)

where { ,    ,   ) is some relative order of ir(A, I) =ir.

Proof. Taking the order of /relative to Q we see that: a(A, B, C, D)
= (Q,A, C)(Q, B, C)(Q, A, D)(Q, B, D).

Now apply P2 to the triples (Q, A, C), (Q, X, D) and, exchanging C,

we have: (Q, A, C)(Q, A, D) = (Q, X, C)(Q, X, D). Multiplying both
sides by (Q, B, C)(Q, B, D) the result follows.

C4.   The above theorem is true if A = Q,.

Proof. Since (Q, X, D)(Q, X, C) = l, by &, we have, in this case,

a(Q, B, C, D) = (B, C)(B, D) = (Q, X, C)(Q, B, C)(Q, X, D)(Q, B, D).
D3. Given four concurrent lines /,■ on a plane ir, we define the

function cr'(/i, k, h, h) =a(Li, L2, L3, Li), where 7< is the intersection

of li and some line l0. In view of the preceding corollary, this defini-

tion makes sense, even if one of the lines is ideal. That it also makes

sense if the lines meet on some ideal point (are parallel) follows from

the following theorem:

T9. Every parallel projection between two lines is an (relative) order-

preserving or order-reversing transformation.

Proof. Is left to the reader.

D9. Given four collinear ideal points fi„ * = 1, 2, 3, 4, we define

<r(12i, fi2, fl3, fi4) =a'(k, k, h, h) where h are concurrent lines such that

QiEk.
That this definition is independent of the point Q where the lines

meet is not difficult to prove.

Now we can check that the order axioms of [l] hold in (P if we

define:
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AB/CD to mean o-{A, B, C,D) = - 1.

We omit the details.

Since our continuity axiom is equivalent to 2.13 of [l] the proof

that (P is the real projective 3-space is now complete.

It is well known that Euclidean 3-space can be obtained from the

real projective 3-space P3 by selecting a plane irEP3 and defining one

imaginary conic Y (the absolute) on that plane. (See [4, pp. 289-

292].) The notion of orthogonality between planes and lines can then

be introduced in P3 — T; a line being orthogonal to a plane if their

intersections with it are pole and polar with respect to the elliptic

polarity defined by T. The group of E3 = Pl — T is the subgroup of

projectivities of P3 which leave T invariant, or equivalently, those

which preserve the relation of orthogonality mentioned above.

That our last three axioms P8, P9 and Pio define an elliptic polarity

on the ideal plane of 8 will now be shown.

The first step is to prove that the notion of orthogonality is invari-

ant under parallelism, i.e. / J_7r, 1//V and 7r//7r' imply /' ±7r'. This

follows rather easily from the axioms.

Let 7ro be the ideal plane of 8. Given any ideal point 0£to we may

use P9 to define a function t(£2) which takes values on the set of ideal

lines of wo in the following way: r(fl) =w if / J-7T where I is any ordi-

nary line incident with fi and it any ordinary plane incident with w.

Because of the previous remark r is a bijective function which maps

the points of iro onto the lines of 7r0. Furthermore, axiom Pio guaran-

tees that collinear points go into concurrent lines and that t_1 has a

similar property. Thus r is a polarity defined on wo, which is elliptic

because of Ps- This completes the proof that the structure defined in

8 by our ten axioms is equivalent to the usual geometric structure

of E\
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