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Let p be a real-valued C°° function defined in a neighborhood of the

origin 0 in C, such that p(0)=0, dp(0)?^0. Then, near zero,

M= {z; p(z) = 0} is a real submanifold of Cn of dimension 2n — 1. If

d3p(0)=^0, then M has a holomorphic hull which contains an open

set. We shall prove an L2 version of this fact. Let db represent the

tangential Cauchy-Riemann operator on Af introduced by Kohn [l].

By L2 on M, we mean the space of functions which are square integra-

ble with respect to surface area.

Theorem. There is a neighborhood N of 0 such that if D

= {zEN; piz) <0} and f is an L2 function on NDM, the following are

equivalent:

(i) fis a weak solution of the equation dbf=0,

(ii) fMfda = 0 for all (n, n — 2) forms a whose support intersects

ND M in a compact set,

(iii) / is the boundary value of a function holomorphic in D,

(iv) / is locally L2 approximable by functions holomorphic in a

neighborhood of NDM.

The only nontrivial part of this theorem is (ii) implies (iii) and

(iv); this was proven in [2] by Hans Lewy for /a C1 function (« = 2,

but that does not matter). The proof here is an adaptation of his

argument. We need to use the following verifiable lemmas.

Lemma 1. Let f be a square integrable function defined in a domain in

C". f is holomorphic if and only if Jfda = 0 for all compactly supported

in, n — 1) forms a.

Lemma 2. Let X be a compact Hausdorff space, p. a finite Baire mea-

sure, A={zEC; \z\ <l), r={zGC; \z\ =l\. Let f: A->Z,2(D be
square integrable; /||/(x)||2^p< =0 and suppose also

f fix)id)ei"edd = 0   forn>0.
J r

Let fix, z) for zGA be the Cauchy integral of fix). Then } has the bound-
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ary values /. More precisely, let <b: XXTX [0, l]—»A be a continuous

map with these properties:

(i) <b(x, 8, t) =d>(x, t)e**, <£(x, 0) = 1,

(ii) d>(XXTX(0, 1))CA.
Then

lim   I       |/(x, <b(x, 6, 8)) - f(x, 8) \2dddn = 0.

Now, we return to M. Because ddp(0)=^0 and dp(0)y^0 we may

choose complex coordinates (z, w, Wi, ■ ■ • , w„_2) near zero so that

M is given by

0 = p(z) = Re w + zz + Q(f, f) + 0(2),

where f is the multivariate (wi, • • ■ , w„_2), Q is a quadratic form,

and^O(2) consists of terms of higher order at 0. Let ir: C-^C"'1,

t(z, w, f) = (w, f). It is shown in [3], that the mapping ir has the fol-

lowing structure. There is a ball N, center at 0 such that ir(M(~\N) is

the closure (in ir(N)) of a domain D0. For (w, $)EDa, T{Wi()=ir~1(w, f)

C\M is a simple closed curve in the z-plane bounding the domain

A(w,f). As (w, £)->bD0, r(M,!-)—>point. Let Z>= {(z, w, f); (w, £)ED0, z

EA(«,,f)}. With the situation so given we prove

Lemma 3. Let /EL2 on M with the property (ii) o/ the theorem. Then

},         „,         If         /(v,w,l;)dV
/(z, w, f) = — I -

is holomorphic in D. 1/ B is a closed ball contained in N, /\ B is Z2-

approximable by translates o/f which are holomorphic in a neighborhood

o/ Bf~\M.

Proof. First of all, / is clearly locally Z2 in D. We use Lemma 1 to

verify that/ is holomorphic. Let 8 be a compactly supported (in D),

(n, m-1) form. Let dV' = dwAdwxA • • • Adw„AdwA • • • Adwn.
(i) 8 = hdz Ad V. Then

J Jd, ^«/A(ttpnL2xtJr(„rr)5z       n - z    J )

= T~f   if       f(l,*>,t)\ f        —^— d^-dzAdz~\dn\dV'.
2«Ji)0UrW) LJ l^X)ii - z dz J    )

Since -n is outside the support of h, by Lemma 1 for n = 1, the inner-

most integral is always zero. Thus //dB = 0 in this case.

(ii) 8 = dzAdzAy, where y is compactly supported (n— 1, n — 2)
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with no dz or dz term. Then dfi = dz/\dz/\d'y where d'y is taken as if

7 were considered as an (n — 1, n — 2) form in the (w, f)-space, with

coefficients varying in z.

Thus

J 2irtJDo Ui,,^^,,,,)       7 ~ 2 J I

=^^^ r* ̂  f /o».w'^r r —^adz~\dn\.
2irtJ d, Wr(„,n L^A(„_r)97-2 J    J

Let

«(»?, w, f) = ( I -rfz A dz) A <fy.

a is a Cxin, n — 2) form defined in a neighborhood of Af whose support

intersects M in a compact set (since 7 vanishes in a neighborhood of

M). Further, computing da, we find ffd(3 = fMfda = 0 by hypothesis.
Now since any compactly supported (w, n — 1) form on P> is a sum

of forms of type (i) and (ii), we have f?d(3 = 0 for all such forms, so by

Lemma 1, / is holomorphic.

Now, in order to apply Lemma 2, we must verify that, for fixed

iw, D, fiz, w, £0 has the boundary value/. That is

(*) I fiz, w, £)zndz = 0    for n = 0.
JrOo.r)

Let

F(w, f) =   I /(z, w, £)zndz     w E Do,
J r{-.»

= 0    a> G A).

We show that Pis holomorphic in tt(A). First, if /3isa Cm(m — 1,« — 2)

form, compactly supported in Do,

j   Fd/3 =   \      J /(z, w)z"rfz A 3/3 =  j   /a(z"rfz A j8) = 0.

Let /3 now be any (« — 1, n — 2) form compactly supported in ir(A).

Choose real C" coordinates in 7r(A), xi, • • • , x2n-2 so that bDo

= {xi = 0}, Z>0 = {xi > 0}. (We may have to do this locally, but after

applying a partition of unity to /3 this is the general case.) Reducing to

the plane X2, • • • , x2n-2 = constant, arg zi = constant, we see that M

intersects this plane in a curve xi = A \ Zi\ 2+ • • • , where A depends
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differentiably on the other constants and is bounded away from zero.

Thus the length of r„ is of the order of 2iry/xi.

Now let p(xi) be a C°° function such that

p = 0    when xi > e, . .
| dp/dxi |   g 2/e.

p = 1    when xi ^ 0,

Now /Dt)Fd8 = fD<lFd(pS), since fFd(l-p)B = 0, as above. Now dpB
= dPA8+PdB,

\f FdpAB   =    f    f        /(a, w, t)dz A dp A B\

=    || \/(z, x)z"-^-c„(x)l&AiK
\J D,Jr{Wit) \ dxi )

where c,3 is a function depending only on x, and d V is the element of

volume in Z>0. Using Schwarz's inequality,

// c I dp      \2 r \1/2
FdpAB   ^KnU\(        \ — c,(*)\ Az\ )■

\JD,\dXi I Jr(Wtt) /

But /r„^| z| ~2tt\/*i, thus

\f FdpAB    g A-n'A-^l/Ue-1 f        Vxidxi ̂ \\/\\ yft.

Now /FpdB is even better, so we find, letting e—>0 that fDaFd8 = 0.

Thus F is holomorphic in ir(N), and since it is identically zero in an

open set, it is identically zero, and (*) is verified.

Now, fix a Riemann map R(W,ry of A(W,n onto {| z| <1}, differenti-

able at the boundary, and varying differentiably in (w, f). Define

4>:D^rM, \p(z, w, f)=the point on T^.n with the same Riemann

mapping argument as (z, w, f).

Now, it is easy to verify that for 5 > 0, if (z, w, f) E M, (z, w — 8, f)

ED. Let cb(w, f, 8, 8) be the point in Y{w^iYr)rs\(M— 8) whose Riemann

mapping argument is 8. By the lemma,

lim   f       | f(d>(w, t, 8, b)) - /(R^jtXe"), w-S,?) \2dV = 0,
»-»o J D0xr

or what is the same

lim   f | }(z, w-8,?)- /(*(*, w-S, f)) \2dV = 0.
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Now the mapping (z, w, f)—►(/'(z, w — 5, f) is a differentiable family of

transformations on M, tending to the identity as 8—»0. Thus

lim   f  | f&iz, w-S, f)) - fiz, w, f) | W = 0.

Thus/(z, w — 5, f)—>/(z, w, f) as 5—>0 in A2 on Af, and since M—SED,

fiz, w — 5, f) is holomorphic on M.
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