A SIMPLE PROOF OF A WELL-KNOWN OSCILLATION THEOREM

W. J. COLES ${ }^{1}$

Theorem ([1], [2]). The equation

$$
\begin{equation*}
\left(r y^{\prime}\right)^{\prime}+p y=0 \quad(r>0, \quad r \text { and } p \text { continuous }) \tag{1}
\end{equation*}
$$

is oscillatory on $[0,+\infty)$ provided

$$
\begin{equation*}
\int^{\infty} \frac{1}{r}=\int^{\infty} p=+\infty . \tag{2}
\end{equation*}
$$

Proof. If (1) is nonoscillatory, the Riccati equation

$$
\begin{equation*}
z^{\prime}+z^{2} / r+p=0 \tag{3}
\end{equation*}
$$

has a solution on some half-line $[a, \infty)$; thus, for large t,

$$
\begin{equation*}
z(t)+\int_{a}^{t} z^{2} / r=z(a)-\int_{a}^{t} p<0 \tag{4}
\end{equation*}
$$

Let $R(t)=\int_{a}^{t} z^{2} / r$; (4) says that

$$
\begin{equation*}
R^{2} \leqq R^{\prime} \cdot r \tag{5}
\end{equation*}
$$

for $t \geqq b>a$ (b sufficiently large). Separation of variables and integration of (5) give

$$
\int_{b}^{t} \frac{1}{r} \leqq R^{-1}(b)-R^{-1}(t) \leqq R^{-1}(b), \quad t \geqq b
$$

which contradicts (2).

References

1. W. Leighton, On self-adjoint differential equations of second order, J. London Math. Soc. 27 (1952), 37-47.
2. A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115117.

University of Utah

[^0]
[^0]: Received by the editors September 18, 1967.
 ${ }^{1}$ Partially supported by NASA Research Grant NGR-45-003-038.

