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Introduction. In order to characterize equivalence classes of

bounded domains in C" under holomorphic homeomorphisms S. Berg-

man introduced various invariants with the help of his kernel func-

tion and invariant metric. For general domains one does not have, at

least at the moment, a convenient complete system of invariants;

for certain very restricted classes of domains, however, it is possible

to find such complete systems. K. H. Look [lO] has shown that

within the class of irreducible bounded symmetric domains of classi-

cal type each holomorphic equivalence class can be characterized by

three constant invariants. In the present paper it will be pointed out

that three constants are sufficient also for the class of all irreducible

bounded symmetric domains. Beside this slight extension of Look's

result we shall also compute certain invariants connected with the

Bergman metric in terms of some fundamental invariants for our

class. For the special case of the classical domains the invariants of

Proposition 3 were also computed in [10], using explicit realizations

of the domains. The results of [10] concerning the "Schwarz con-

stant" were extended to the case of arbitrary symmetric domains

in [9].

1. Let M=G/K he a noncompact irreducible hermitian symmetric

space. It is known [4], [5] that M has a canonical realization D as a

bounded domain in a complex euclidean space V. We denote the

complex dimension of M by n, its rank by /.

Denoting by g the Lie algebra of G, g has a Cartan subalgebra f)

which is also a Cartan subalgebra of t, the Lie algebra of K. We de-

note the set of positive roots of g which are not roots of I by $. It is

known [4] that $ has a subset A of / strongly orthogonal roots span-

ning a subalgebra ff~ of f), which is a Cartan subalgebra of the sym-

metric pair (g, i). The restrictions of the elements of $ to fr~ are of

the form a, (a+/3)/2 or a/2 (a, PEA, a^/3), each root of the first type

occurring with multiplicity one, each of the second with identical

multiplicity a, and each of the third with identical multiplicity b.

This follows from the fact [ll] that the small Weyl group con-
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sists of all signed permutations of A. It also follows that the full root

system of (g, f) consists of ±a, (±a±r3)/2, ±a/2 (a, j3EA, a=^/3),

with the respective multiplicities 1, a, 2b.

The generalized Cayley transform of D was defined in [7]. It in-

duces a splitting of V into a direct sum of euclidean spaces, V—Vi

® Vi. The dimensions «i and n2 of Fi and Vi are then natural num-

bers canonically associated with D (and M). Clearly, ni+n2 = n. We

define the number p by

p = (2wi + tti)/l

since this combination of constants will frequently occur in what fol-

lows.

Proposition 1. The /ollowing relations hold:

(1) m = al(l-l)/2+l,
(2) m=bl,
(3) p=a(l-l)+b+2.

The three numbers (I, a, b) or the three numbers (I, m, n2) determine M

uniquely.

Proof. In [7] it is shown (Remark after Proposition 4.4) that a

basis of Fi can be constructed from those root vectors £_7 (yE$) of

gc for which the restriction of y to ty is of the form a or (a+j(3)/2

(a, j3EA). The total number of these is just 1(1 — l)a/2+l. Similarly

the E-y (yE&) with y restricting to a/2 (aEA) span V2, which

proves (2). (3) is immediate from the definition of p.

To see that (I, a, b), or what by (1), (2) is the same, (I, «i, n2) de-

termine M uniquely, we have to use the classification of hermitian

symmetric spaces.2 The following list of noncompact irreducible types

is by [5, Chapter IX] exhaustive and contains no repetitions. The

table of constants is easy to compute and our statement can be read

off it at once.
I. SUr(r+s)/S(U(r)XU(s)) (s^r^l), realizable in the space of

rXs complex matrices,

II. Sp(r, R)/U(r) (r^2), realizable in the space of symmetric

rXr matrices,

Ill.a. SO*(4r)/U(2r) (r^3), with standard realization as 2rX2r

skew-symmetric matrices,

2 As Professor S. Helgason has kindly informed me, it is true even in the class of all

(not necessarily hermitian) symmetric spaces that the rank and the system of roots

with multiplicities determine the space uniquely. However, no a priori proof of this

seems to be known.
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Ill.b. SO*i4:r+2)/Ui2r + l) (r^2) with a realization as (2r + l)

X(2r + 1) skew-symmetric matrices,

IV. SO2in+2)/SOin)XSOi2)   (»^5),   realizable in O (cf.   [6]),
V. Ei/SOilO)XSOi2),  the  16-dimensional exceptional domain,

VI. Ei/E$X,S0i2), the 27-dimensional exceptional domain.

Type                     n                 »i nt I a b p

I.   (s^r^l)              rs                 r2 r(s — r) r 28 s—r s+r

II.  (r&2) r(r + l)/2 r(r + l)/2 0 r 1 0 r + 1

Ill.a.  (r£3) r(2r-l) r(2r-l) 0 r 4 0 4r-2

Ill.b. (r£2) (2r+l)r r(2r-l) 2r r 4 2 4r

IV.  («&5)                   re                  re 0 2 re-2 0 re

V.                                16                  8 8 2 6 4 12

VI.                               27                27 0 3 8 0 18

2. We denote the Bergman kernel of D by 3C(z, w). On F we shall

use the coordinate system with respect to the orthonormal basis

E-a iaE&). The coefficients of the Bergman metric are

(4) &*(«) = d2 log JC(z, z)/dzadz».

As noted first by S. Bergman, the function

(5) / = 3C(z, z)/det gaJiz)

is clearly invariant under holomorphic homeomorphisms; in the

present case, since D is homogeneous, it is constant on D. It follows

that for the Ricci tensor we have r„j(z) = —gcipiz), and that the scalar

curvature is R = — 2ra everywhere on D. The curvature tensor is given

by

d*log3C(8,«)        -, ,a3logJC(z,z)      6>3 log 3C(z, z)
(6) Rapyiiz) =-1- g"iz)- • -,

dZadZffdZydzs dztdzadZy dzTdz^dZi

(the summation convention is used). The holomorphic curvature

along the vector with coordinates ua (a£<p) is

• If r= 1, no roots of the second type occur, so a = 0. In this case also l— 1, therefore

a does not occur explicitly in any of our formulas.
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(7) k(z, u) = Raey~s(z)uaU0UyUS/(ga0(z)uaup)2.

We shall use the Koecher Gamma function J^Ts) associated with

D. Its definition is recalled in [8]; it can be computed explicitly by a

method of S. G. Gindikin [3]. After adjusting the volume element

used in [3, Theorem 2.1] to the normalizations of [8] one finds

(8) P(*)-(2*)<*-»/»rW/9 Tinis/l-a/2) r(nis/l-(l-l)a/2).

Proposition 2. The invariant I has the value

I=     i     ^  i   Tip) Tip - «/2) ■■■np-d- i)q/2)
p»(vol D)     p**»  T(D T(l + a/2) . . - P(l + (/ - l)0/2) '

Proof. It is sufficient to compute (5) for z = 0. By a well-known

theorem of E. Cartan, in D there exists a complete orthonormal sys-

tem of holomorphic functions consisting of homogeneous polynomials.

It follows that at the origin X(z, w) has the expansion

(9) 3Z(z, w) = 3C(0, 0)(1 + Q(z, w) + ■ ■ ■ )

where 3C(0, 0)_1=vol D, and Q(z, w) is a hermitian quadratic form.

Q(z, w) is invariant under the isotropy group K of D, and K is irre-

ducible on V. Hence Q(z, w) = C 2„e* zawa.

To find the value of C we note that by [8, Proposition 5.7] we

have, for z' = i"J2aei, raE-a, (r„2=0),

(10) 3C(z', z') = 3C(0, 0) TJ (1 - rl)~" = X(0, 0) ( 1 + p £ r« + ■ ■ • ).
a€A \ a€A /

It follows that C = p. Differentiating (9) we have ga~p(0)=p for all

a, 0E$, and hence det gap(0)=pn.

As noted above, K(0, 0)_1 = vol D. By (8) and by [8, Proposition

5.7],

HD Hi + a/2) • • • T(l + (.1 ~ Da/2)
(11) V0lZ) = 7Tn-^-==-==-   •

np) np - ^2) ■ ■ • r<* - 9 - d»/2)
This finishes the proof of our statement.

Remark 1. For the four classical types of domains vol D was com-

puted by L. K. Hua in [6]. His results agree with (11) if one takes into

account that in case II his volume element is not the one induced by

the quadratic form defining the euclidean structure on V and that in

case IV he uses a domain which is our standard D shrunk by a factor

V2.
Remark 2. (8) and [8, Proposition 5.8] also give an explicit

expression for the volume of the Bergman- Silov boundary B of D:
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2(nl+D/2,r(BrH)/2+B2

vol B = -r=-==-^-•
n»/0 Tin/l - a/2) ■ ■ ■ Y(n/l - (/ - l)a/2)

This was also computed in [6] for the classical types; the results

there do not in each case agree with the present one. It is clear, how-

ever, that e.g. in the case I with r=l (unit ball in C*) the result in

[6] cannot be correct.

Proposition 3. As z varies over D and u varies over all tangent vectors

at z, we have

inf k (z, u) = — 2/p,   sup k (z, u) = — 21 pi = — 2/(2«! + n2).

Proof. Since D is homogeneous it is enough to consider the case

z = 0. Identifying the tangent space at 0 with V, it is also enough to

consider the case u= zZaen uaE^a iua = §), since every vector can be

transformed to this form by an element of K, which leaves the metric

invariant.

As remarked before, we have 3C(z, z) = ^|<A^(z)|2 where the d>, are

homogeneous polynomials. Hence all derivatives of odd order of

3C(z, z) vanish at 0. So, by (6) we have

34 log 3C(z, z)
(13) Rahii0) = -  a    *       I- •

OZaOZpOZydZs     j_0

For z of the special form z' =i^aBA raE-a we have, by (10),

log 3C(z', z') = log 3C(0,0)-pzZ log (1 - ra)
a(=A

= log3C(0,0) +pzZ(rl + rjl +■■■).

Hence, for arbitrary zED, the sum of those fourth order terms of

log 3C(z, z) which involve only the coordinates za (a£A) is equal

to ip/2) zZa£& £&■ For u of the form zZ<>£& uaE-a we now have, by

(13),

RafiysiO)uaUfiUyUs = — 2p zZ u<*-

Earlier we found gapi0) = pbap for all a, (3E&- Hence, by (7),

*(0, u) =--.

\t»eA     /
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As the ua vary independently over nonnegative numbers, this expres-

sion clearly has the lower and upper bounds given in the statement of

the proposition.

IRemark. The curvature tensor of the hermitian symmetric mani-

folds has been studied by different methods by E. Calabi, E. Vesentini

and A. Borel [l], [2]. Our computation of sup k(z, u) together with

Proposition 2.4(a) and Lemma 2.6 of [l] shows that the eigenvalue

Xi of the operator Q computed in [l] and [2] is —2/p, if the Bergman

metric is used (in [l], [2] the metric is normalized differently). The

number y(D), which plays a crucial role in [2], is independent of the

normalization and turns out to be equal to our p.
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