
ON SOME DETERMINANTAL INEQUALITIES

DAVID CARLSON1

1. We shall discuss two recent theorems by Marvin Marcus ([6,

Theorem 3]) and Ky Fan ([4, Theorem 1 ]) involving related determi-

nantal inequalities. WTe give improvements of their inequalities, and

show how they follow from the previously known special cases of the

theorems.

We deal with real or complex matrices A of order n. For any subset

8 of {1, ■ ■ • , n}, we denote by A(8) the principal minor on the rows

and columns of A indexed by B; clearly the order in which the indices

of 8 occur is irrelevant. We define A(0) = 1. Now let p\, ■ • • , 8k be

subsets of {1, • • ■ , n}, and h a positive integer between 1 and k; we

define

4>(A;h;8i, ■ ■ • ,ft) = (det A)*/Affix) ■ ■ ■ A(fi„),

it A(Bt) 7^0, *=1, • • ■ , k. We may now state the theorems mentioned

above.

Theorem A (Marcus). Let A be positive definite hermitian, and

8i, ■ • • , Bk subsets of {1, • • • , n}.

Suppose each i,i—l, • ■ • ,n, occurs in exactly h of the Bj. Then

<p(A;h;8u ■ ■ -,ft) g 1.

A proof of Theorem A for totally positive (i.e., all minors positive)

and (nonsingular) Af-matrices (cf. [7] or [3]) was given by Fan

in [4].

Theorem B (Fan). Let A be a nonsingular M-matrix and B any

complex matrix for which

an ^  | bu\ , i = 1, • • • , n;    \ b{j\   ^   | otf|, i,j = 1, • • • , n;   i ^ j.

Let 3i, ■ ■ ■ , Bk be subsets of {1, • • • , n}. If each i,i=l, ■ ■ ■ , n, oc-

curs in at most h of the Bj, then

(2) <b(A; *; ft, • • • , &) ^  | 4>(B; h; filt • • • , Bh) | .

2. Now  for our theorems.  Given p\, • • • ,  Bk, we define,  for h

= 1, • • -, k,
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ah = {i\ i occurs in at least h of the ft}.

We then define

KAifa, ••-,&) = Aiai) ■ ■ ■ Aiak)/Aipi) ■ ■ ■ Aifiu),

(again, if yl(ft)?^0, i=l, • • ■ , k). If k = 2, we have

,       Aiai)Aia2)       AiHiVJfi2)AifiiD02)
(3) MA;Pi,Pi) =-=- •

AifidAQti A(J3i)Ai($2)

Theorem 1. Suppose all principal minors of A are nonzero and

| MA; ft, ft) | ^1 for all ft, ft. Then, for all ft, • • • , ft,

(4) |#U;fr, • • -,ft)| = 1.

If each * occurs in exactly h of the ft, then

ai =   • • •   = «a = {1 ,•••,»},    o:a+i =   • ■ ■   = ak = 0;

if, further, all principal minors of A are positive, we have Marcus'

inequality.

The condition | \pi^ ; ft, ft) | ^ 1 is equivalent by (3) to

\A (ft D ^) A (ft U ft) |  £\A (ftM (ft) |,

which is known to hold for positive definite, totally positive, and

M-matrices (cf. [3]). If all principal minors of A are positive, a char-

acterization of all matrices satisfying the hypotheses of Theorem 1

is given in [l].

Theorem 2. Suppose all principal minors of A and B are nonzero,

and | MA ; ft, ft) | g | ̂ (P; ft, ft) | for all ft, ft. Then, for all ft, • • • , ft,

(5) |*U;/8i, • ■-,&) |  ^ U(P;ft, • • -,ft)|.

To obtain Fan's theorem, we need to use Proposition 3 of [3]

(which gives the case k = 2 under the hypotheses of Theorem B) and

a remark which follows easily from two theorems of Ostrowski ([7,

Satz I and III]; see also [3]):

Remark. Let A and B satisfy the hypotheses of Theorem B. // aC/3

are subsets of {1, • • • , n}, then

Aifl/Aia) ^   \BiJ3)/Bia)\.

Under the hypotheses of Theorem B, we have a;C{l, • ■ • , n},

i=l, • • • ,h,ai = 0, i = h + l, ■ ■ • ,k. Therefore
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<b(A; Bi, • • • , Bk) = HA;h; ft, ■ • • , Bk) II TTT >
<_i A(ai)

the conclusion of Fan's Theorem now follows immediately.

Given ft, • • • , ft, subsets of {1, • • • , n}, we define

7i =   D Bi,        i = 1, ■ ■ ■ ,n.

If we assume with Marcus that each i, i=l, ■ ■ ■ , n, occurs in ex-

actly h of the Bj, then it is easy to show that, for iy^j, either yi = y, or

7f^7y = 0; clearly, Uy,= {l, • • • , «}. We can now determine the

case of equality in Marcus' theorem. A [y] denotes the principal sub-

matrix of A on the rows and columns indexed by y.

Theorem 3. Under the hypotheses of Theorem A, we have equality in

(1) if and only if A is a "direct sum" of the A [yg] (i.e. a,7 = 0 unless

{i,j}EyQfor some g).

3. Proof of Theorem 1. By hypotheses the theorem is true for

jfe = 2; assume it is true for 2, • • • , k — 1. Let Qhk be the collection of

subsets with h elements from {1, • • • , k}. It is easy to see that

«»= u (n Pi)

and ai2«2 2 • • • 3«a- Now we define

a» =      U      (H  Bi);
u'£Ql,,k-i   «'£<■>'

a/ 2a/ 2 • • • ^a't_i and a^ah forA = l, • • • ,k — 1. Note that

ai-i C\ Bk = ak

ai r\ (a'h+i U Bk) = aUi U (ai H ft) = an+1\        ,        , t       „
, >      h = 1, • • • , k — 2.

ai \J (aUx W ft) = a,' U ft /

ai' U ft = ai.

Now by induction and the result for h = 2,

| A(Bx) ■ ■ ■ A(8k-x)A(8k) |   ^\A(a{) ■-• A(aU)A(Bk) |

^   | 4(af)  • • • A(aU)A(aLxUBk)A(ak)\   ^     • •

^   U(ai) • • - ̂ (oa) I ,

which is equivalent to (4).
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4. Proof of Theorem 2. By hypothesis the theorem is true for

k = 2; assume it true for 2, • • • , k — 1. Now

n a iah)    n a («o ii aw) ha («»' u ^
ft-l fc-l fc-1 A-2

£ £ fc—1 £_2

ru(ft)    n^(ft)ii^(«A)n^w ^ft)
A-l A=l A-l h=i

=   ^(a()i(gi'.1Uft) i=-2   Aiah+i)AiaH Wft)

^(at'_i)^(ft)      i., i4(o»')4(o»'+,VJ/J*)

Aja^Ajai)        |d  ^fa')

'^(a1')i4(a,' Uft) fi   ,4 (ft)

and by the inductive hypothesis, multiplying inequalities for the

corresponding factors for A and B, we are done.

Proof of Theorem 3. Suppose MA; h; ft, • • • , ft) = 1; under the

hypotheses of Theorem A, this is equivalent to MA ; ft, • ■ • , ft) = 1.

It is sufficient to prove that if 7 = 71= {l, • • • , p} =n*„i ft, then

aig = 0if i^p, g>p or i>p, g^p. But now for each go>p, there exists

aft, i>h; say i = h+l, such thatgoEft+i, yD[ih+i = 0. If we consider
the inductive procedure we used in Theorem 1, at some stage in the

chain of inequalities (we may omit the absolute value signs)

AiBO ■ ■ ■ Ai0k) ^ ^ Aicxi) ■ ■ ■ Aiak),

we have, as ft D ■ ■ ■ Dfih = y andyDph+i = 0,

A(8iV ■ ■ • Uft) • • • Aiy)Ai0h+i) ■ ■ ■ AQ3k)

£ AifitKJ ■ ■ ■ Uft) • • • Aiy U ft*,) • ■ • A(J3„).

If MA ; h; ft, • • • , ft) = 1, we must have

Aiy)A(j3h+i) = ^(7Wft+1),

which implies (cf. [5, Vol. I, p. 255]) aiQl = aati = 0 for i^p iiEy).

Suppose A is the "direct sum" of the A [yj. Each ft and hence each

a{ is a union of ys; thus

A (ft) =   II  My,),        Aia{) =   JJ  Aiyg).

Since each index occurs h times, each A (yg) occurs h times (both in

the numerator and denominator of (j>iA; h; ft, • • • , ft)). Thus we

have equality in (1).
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5. Remarks. Classical determinantal inequalities have recently

been generalized in two different ways. In the first, Marvin Marcus

and others have considered "generalized matrix functions" (cf. [6],

[10], [ll]). The author thanks Marvin Marcus and the referee for

pointing out (independently) that this note is related to [ll]. The

inequality (13) of Theorem 5 of [ll] is, like Theorem 3 of [6], sharp-

ened by Theorem 1.

In the second type of generalization, Ky Fan considers real-valued

functions / on a distributive lattice Z which are "subadditive":

/(aA8)+/(aV8)^/(a)+/(8) for all a, BEL. For matrices A with
positive principal minors and satisfying the hypotheses of Theorem 1,

the function /(a) =log A (a) is subadditive on the lattice of subsets of

{1, • • • , n}. In this setting Fan has generalized a classical identity of

Szasz [9], [12] and (after seeing a preprint of this note) unified and

generalized our Theorems 1 and 2 [8].
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