GENERALIZATIONS OF A PROPERTY OF TCHEBYCHEFF POLYNOMIALS

THOMAS L. SHERMAN

The purpose of this paper is to generalize a well-known property of polynomials to functions which are solutions of linear differential equations of the form $L_n y = \sum_{i=0}^n p_i(x) y^{(i)} = 0$, where $p_n(x) \neq 0$ and all the coefficients are continuous. In particular, the problem to be generalized is that of finding a polynomial of degree n with leading coefficient 1 whose maximum absolute value deviates least from zero in the interval $-1 \leq x \leq 1$ (see for example Courant and Hilbert [1, pp. 88-89]).

First we need:

DEFINITION. The first conjugate point $\eta_1(a)$ of the point a is the smallest number b > a such that there exists a nontrivial solution of $L_n y = 0$ which vanishes at a and has n zeros, counting multiplications, in [a, b].

We can now state the main result of this paper.

THEOREM. Let $L_{n+k}y = \sum_{i=0}^{n+k} p_{n+k,i}(x)y^{(i)} = 0$ (k=0, 1) be a pair of linear differential equations, where $p_{n+k,n+k}(x) \neq 0$ (k=0, 1), $n \geq 1$ and all the coefficients are continuous on [a, b] and, $b \leq \eta_1(a)$ for k=0, 1 (if $\eta_1(a)$ does not exist, b may be chosen arbitrarily). Suppose that if z(x) is a solution of $L_n y=0$, then it is also a solution of $L_{n+1}y=0$. Let $\{\phi_i(x)\}$ $(i=1, \cdots, n+1)$ be a fundamental set of solutions of $L_{n+1}y=0$, where $\{\phi_i(x)\}$ $(i=1, \cdots, n)$ is a fundamental set of solutions of $L_n y=0$. Then the solution $\phi(x)$ of $L_{n+1}y=0$, such that $\phi(x) = \phi_{n+1}(x) + \sum_{i=1}^{n} a_i \phi_i(x)$ and such that $\max_{x \in [a,b]} |\phi(x)|$ is minimal, is that solution $\phi(x)$ satisfying

(i) $\phi(x)$ has n distinct zeros in (a, b).

(ii) Let the zeros in (i) be located at $x_1 < x_2 < \cdots < x_n$. Let the points at which $\phi(x)$ attains its extreme values in $[a, x_1], [x_1, x_2], \cdots, [x_{n-1}, x_n], [x_n, b]$ be denoted respectively by $c_1, c_2, \cdots, c_n, c_{n+1}$. Then $|\phi(c_1)| = |\phi(c_2)| = \cdots = |\phi(c_{n+1})|$.

PROOF. First it must be shown that such a solution $\phi(x)$ of $L_{n+1}y=0$ exists. We can always assign n zeros in (a, b) in an arbitrary manner [2, Theorem 3]. We need first to show that these points may be adjusted such that the relative values $|\phi(c_i)|$ $(i=1, \dots, n+1)$ may be adjusted at will. Denote by ||y|| the norm $\sum_{i=0}^{n} \max_{x \in [a,b]} |y^{(i)}(x)|$.

Received by the editors January 1, 1967.

Let $S = \{y | y \text{ is a solution of } L_{n+1}y = 0 \text{ with } n \text{ distinct zeros on } (a, b)$ and $||y|| = 1\}$. First fix x_2, x_3, \dots, x_n for $y \in S$ and let x_1 approach a. Then $y(c_1)$ approaches zero since ||y|| = 1. Similarly $y(c_i) \rightarrow 0$ as $x_i - x_{i-1} \rightarrow 0$ $(i = 2, 3 \dots, n)$, but $y(c_i) \rightarrow 0$ $(i \neq j)$ since $\eta_1(a) \geq b$ (for $L_{n+1}y = 0$) implies that no solution has n+1 zeros on [a, b) (or (a, b]), by [2]. Thus by appropriate choice of x_1, \dots, x_n we can adjust the relative values of $|y(c_i)|$.

We shall now establish the existence of the solution $\phi(x)$ of the theorem. By choosing x_1 sufficiently near a we can choose a solution $y(x) \in S$ such that $|y(c_1)| \leq |y(c_i)|$, i > 1. Now let $x_2 \rightarrow x_1$ until $|y(c_1)| = |y(c_2)|$, then by choosing both x_1 and x_2 sufficiently close to a we find $|y(c_1)| = |y(c_2)| \leq |y(c_i)|$, i > 2. Continuing in this manner we find a solution $y(x) = \Psi_1(x) \in S$ such that $|\Psi_1(c_1)| = |\Psi_1(c_2)|$ $= \cdots = |\Psi_1(c_n)| \leq |\Psi(c_{n+1})|$. We now shall vary the points x_1 , \cdots , x_n as determined by $\Psi_1(x) = y(x)$. Let $x_n \rightarrow b$ until $|y(c_{n+1})|$ $= |y(c_j)|$ for some j < n+1. Let $c_{j_1} < c_{j_2} < \cdots < c_{j_n}$ be the values such that $|y(c_{n+1})| = |y(c_{j_1})| = |y(c_{j_2})| = \cdots = |y(c_{j_n})|$. If s = n we are of course done, so we shall suppose s < n. Let k be the smallest integer for which the sequences j_1, j_2, \dots, j_k and $1, 2, \dots, k$ do not coincide. For $j_i < k$ let $x_{j_i} \rightarrow x_{j_i-1}$ (and if $j_1 = 1$ let $x_{j_1} \rightarrow a$), for $j_i > k$ let $x_{i,-1} \rightarrow x_{i,i}$ and $x_n \rightarrow b$ (that is the zero points to the left of x_k are moved to the left and the zero points to the right of x_k are moved to the right) until $|y(c_{n+1})| = |y(c_{j_i})| = \cdots = |y(c_{j_k})| = |y(c_m)|$ for some *m* $\notin \{j_1, j_2, \dots, j_s, n+1\}$. Continuing in this manner we can find a solution $y(x) = \Psi_2(x) \in S$ such that $|\Psi_2(c_{n+1})| = |\Psi_2(c_i)| \ge |\Psi_2(c_j)|$ for some j < n+1 and all $i \neq j$, i < n+1. In a manner similar to that used to find $\Psi_1(x)$ we can find a solution $\Psi_3(x) \in S$ such that $|\Psi_3(c_{n+1})|$ $|\Psi_3(c_i)| \leq |\Psi_3(c_i)|$ for all $i \neq j$, i < n+1. Comparing $\Psi_3(x)$ and $\Psi_2(x)$ we conclude, from the continuous dependence of solutions on x_1, x_2 , \cdots , x_n , that the solution $\phi(x)$ of the theorem exists. Further, since $\eta_1(a) \ge b$ (for $L_n y = 0$) implies there is no solution of $L_n y = 0$ with n zeros in (a, b), we conclude $\phi(x)$ is a solution of $L_{n+1}y = 0$ but not of $L_n y = 0$. Hence, after multiplying $\phi(x)$ by a nonzero constant if necessary, we may write $\phi(x) = \phi_{n+1}(x) + \sum_{i=1}^{n} a_i \phi_i(x)$ (we drop the requirement here that the solution be a member of S).

We shall now show that this solution $\phi(x)$ has the desired extremal property. Suppose it does not, then there is a solution $z(x) = \phi_{n+1}(x)$ $+ \sum_{i=1}^{n} b_i \phi_i(x)$ such that $\max_{x \in [a,b]} |z(x)| < \max_{x \in [a,b]} |\phi(x)|$ $= |\phi(c_i)|$ $(i=1, 2, \dots, n+1)$. We shall for definiteness assume $\phi(a) > 0$. Then $\phi(c_1) - z(c_1) > 0$, $\phi(c_2) - z(c_2) < 0$, \cdots . Hence $\phi(x)$ $-z(x) = \sum_{i=1}^{n} (a_i - b_i)\phi_i(x)$ vanishes at least once in (c_1, c_2) , (c_2, c_3) , \cdots , (c_n, c_{n+1}) and hence has *n* zeros in (a, b). However, $\phi(x) - z(x)$ is then a solution of $L_n y = 0$ with *n* zeros in (a, b) which is impossible since $\eta_1(a) \ge b$, by [2].

COROLLARY. Let $L_{n+k}y = \sum_{i=1}^{n+k} p_{n+k,i}(x)y^{(i)} = 0$ (k=0, 2) be a pair of linear differential equations, where $p_{n+k,n+k}(x) \neq 0$ $(k=0, 2), n \geq 1$ and all the coefficients are continuous on [a, b] and $b \leq \eta_1(a)$ for k=0,2 $(if \eta_1(a) does not exist, b may be chosen arbitrarily)$. Suppose that if z(x)is a solution of $L_n y=0$, then it is also a solution of $L_{n+2}y=0$. Let $\{\phi_i(x)\}$ $(i=1, \cdots, n)$ be a fundamental set of solutions of $L_n y=0$. Let $\phi_{n+2}(x)$ be a solution of $L_{n+2}y=0$ which has n+1 distinct zeros in (a, b) located at $x_1 < x_2 < \cdots < x_{n+1}$ such that $\max_{x \in [a, x_1]} |\phi_{n+2}(x)|$ $= \max_{x \in [x_1, x_2]} |\phi_{n+2}(x)| = \cdots = \max_{x \in [x_{n+1}, b]} |\phi_{n+2}(x)|$ (i.e. $\phi_{n+2}(x)$ is the solution $\phi(x)$ of the theorem). Let the points at which their extreme values are attained be denoted by $c_1, c_2, \cdots c_{n+2}$ respectively. Let $\phi_{n+1}(x)$ be a solution of $L_{n+2}y=0$ which satisfies the conditions $\phi(c_i)=0$ for $i=1, 2, \cdots, n+1$. Then the solution $\phi(x)$ of $L_{n+2}y=0$, such that $\phi(x) = \phi_{n+2}(x) + \sum_{i=2}^{n+1} a_i \phi_i(x)$ and such that $\max_{x \in [a, b]} |\phi(x)|$ is minimal, is $\phi(x) = \phi_{n+2}(x)$.

PROOF. We first note that $\phi_{n+1}(x)$ is not a solution of $L_n y = 0$ since it has n+1 zeros on [a, b], hence it is independent of $\phi_i(x)$ (i=1, 2, 2) \cdots , n). Further it is independent of $\phi_{n+2}(x)$ since the zeros are different. Suppose now ϕ_{n+2} does not have the desired extremal property. Then there is a solution $z(x) = \phi_{n+2}(x) + \sum_{i=1}^{n+1} b_i \phi_i(x)$ such that $\max_{x \in [a,b]} |z(x)| < \max_{x \in [a,b]} |\phi_{n+2}(x)|$. We shall assume $\phi_{n+2}(a) > 0$. In particular $\phi_{n+2}(c_1) - z(c_1) > 0$, $\phi_{n+2}(c_2) - z(c_2) < 0$, \cdots , but, since $\phi_{n+1}(c_i) = 0$ $(i=1, \cdots, n+1), \phi_{n+2}(c_i) - [z(c_i) - b_{n+1}\phi_{n+1}(c_i)]$ has these same properties for $i = 1, \dots, n+1$. Hence $\phi_{n+2}(x)$ $-[z(x)-b_{n+1}\phi_{n+1}(x)] = -\sum_{i=1}^{n} b_i\phi_i(x)$ vanishes at least once in $(c_1, c_2), (c_2, c_3), \cdots, (c_n, c_{n+1})$ and hence has n zeros in (a, b). But, since $\eta_1(a) \ge b$ for $L_n y = 0$ and $-\sum_{i=0}^n b_i \phi_i(x)$ is a solution of $L_n y$ = 0, we conclude that $b_i = 0$ $(i = 1, \dots, n)$. Hence z(x) $=\phi_{n+2}(x)+b_{n+1}\phi_{n+1}(x)$. However $z(c_1)=\phi_{n+2}(c_1)$, contradicting the $\phi_{n+2}(c_1) = \max_{x \in [a,b]} |\phi_{n+2}(x)| > \max_{x \in [a,b]} |z(x)|.$ assumption that Hence $\phi_{n+2}(x)$ is the desired solution.

EXAMPLES. (1) Let $L_{n+k}y = y^{(n+k)} = 0$ (k = 0, 1), a = -1, b = 1, and $\phi_i(x) = x^{i-1}$ $(i = 1, 2, \dots, n+1)$. In this case the solutions in question are polynomials of degree n with leading coefficient one. The function $\phi(x)$ of the theorem, as in well known, is the Tchebycheff polynomial $T_n(x) = (\frac{1}{2})^{n-1} \cos [n \cos^{-1}x]$.

(2) Let n = 2m + 1 and let

$$L_{n+k}y = y^{(n+k)} + \sum_{i=1}^{m+k/2} i^2 y^{(n+k-2)} + \sum_{j=2}^{m+k/2} \sum_{i < j} i^2 j^2 y^{(n+k-4)}$$

+
$$\sum_{m=3}^{m+k/2} \sum_{j < m} \sum_{i < j} i^2 j^2 m^2 y^{(n+k-6)} + \cdots$$

+
$$(1^2 \cdot 2^2 \cdot \ldots \cdot (m+k/2)^2)y' = 0,$$

where (k = 0, 2), a = 0, $b = 2\pi$ and $\phi_1(x) = 1$, $\phi_2(x) = \sin x$, $\phi_3(x) = \cos x$, \cdots , $\phi_n(x) = \cos mx$, $\phi_{n+1}(x) = \sin (m+1)x$, $\phi_{n+2}(x) = \cos (m+1)x$. Thus we are considering the usual Fourier series partial sum of order m+1 with leading coefficient one. The function $\phi_{n+2}(x) = \cos (m+1)x$ is the function of the corollary.

BIBLIOGRAPHY

1. R. Courant and D. Hilbert, *Methods of mathematical physics*, Vol. 1, Interscience, New York, 1953.

2. T. L. Sherman, Properties of solutions of Nth order linear differential equations, Pacific J. Math. 15 (1965), 1045-1060.

ARIZONA STATE UNIVERSITY