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The purpose of this paper is to generalize a well-known property

of polynomials to functions which are solutions of linear differential

equations of the form L„y = Z?-o Pi(x)y(i) = 0, where pn(x)^0 and

all the coefficients are continuous. In particular, the problem to be

generalized is that of finding a polynomial of degree n with leading

coefficient 1 whose maximum absolute value deviates least from zero

in the interval — l^xrSl (see for example Courant and Hilbert

[1, pp. 88-89]).
First we need:

Definition. The first conjugate point r)i(a) of the point a is the

smallest number b>a such that there exists a nontrivial solution of

Z„y = 0 which vanishes at a and has n zeros, counting multiplications,

in [a, b].

We can now state the main result of this paper.

Theorem. Let Ln+ky= Z?-oPn+k.i (x)yci) = 0 (& = 0, 1) be a pair of

linear differential equations, where pn+k,n+k(x)y*0 (k = 0, 1), wSil and

all the coefficients are continuous on [a, b] and, b^rjx(a) for & = 0, 1 (if

i]i(a) does not exist, b may be chosen arbitrarily). Suppose that if z(x) is

a solution of L„y = 0, then it is also a solution of Ln+iy = 0. Let {<bi(x)}

(i=l, • • • , n + l) be a fundamental set of solutions of Zn+iy = 0, where

{cpi(x)} (i=l, • • • , n) is a fundamental set of solutions of Zny = 0.

Then the solution <p(x) ofLn+iy = 0,suchthat<p(x) =<ft„_i_i(x) + y.?_i«,<£,:(x)

and such that maxie[0,6]|<p(x)| is minimal, is that solution <f>(x) satis-

fying
(i) <p(x) has n distinct zeros in (a, b).

(ii) Let the zeros in (i) be located at xi<x2< • • • <x„. Let the points

at which <p(x) attains its extreme values in [a, Xi], [xi, x2], ■ • ■ ,

[x„_i, x„], [x„, b] be denoted respectively by ci, c2, ■ • • , cn, cn+x- Then

\<p(cx)\=\cp(c2)\ = ■ ■ ■ =|<Kc„+i)|.

Proof. First it must be shown that such a solution <b(x) of ZB+iy = 0

exists. We can always assign n zeros in (a, b) in an arbitrary manner

[2, Theorem 3]. We need first to show that these points may be ad-

justed such that the relative values |<p(c,)| (i=l, ■ • ■ , n + l) may

be adjusted at will. Denote by ||y|| the norm Z?=o maXiS[0,i,| | y(,)(x) |.
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Let 5= {y|y is a solution of £n+iy = 0 with n distinct zeros on (a, b)

and ||y|| = 1}. First fix x2, x%, • • • , xn for yES and let Xi approach a.

Then y(ci) approaches zero since ||y||=l. Similarly y(c,)-^0 as

Xi— Xj_i—>0 (i = 2, 3 • ■ ■ ,n), but y(cy)--i-K) ii^j) since rjiia)^b (for

L„+1y = 0) implies that no solution has n + 1 zeros on [a, b) (or (a, b]),

by [2], Thus by appropriate choice of xi, • • • , xn we can adjust the

relative values of | y(c;) |.

We shall now establish the existence of the solution 4>(x) of the

theorem. By choosing Xi sufficiently near a we can choose a solution

y(x)ES such that |y(ci)| ^ |y(c,)| , *>1. Now let x2—>Xi until

I yict) I = I yici) I. then by choosing both Xi and x2 sufficiently close to

a we find |y(ci)| =|y(c2)| ^|y(c,-)| , i>2. Continuing in this manner

we find a solution y(x) =fi(j;)£5 such that j"^i^i) | = [ "^i(c2) j

= • • • =|^i(c„)| i£ I ̂ (cn+i) I.  We now shall vary the points xi,

• • • , x„ as determined by ^(x) =y(x). Let xn—>b until |y(cn+i)|

= |3'(cj)| f°r some j<n + l. Let c31<Cj\,< • ■ • <c3t be the values

such that |y(cn+i)| = |y(cjj)| =|y(cy2)| = ■ • • =|y(cy,)|. If s = nwe

are of course done, so we shall suppose s<n. Let k he the smallest

integer for which the sequences ji,j2, ■ ■ • ,jn and 1,2, • • • , k do not

coincide. For jt<k let x3i-^>x3i-i (and if ji = l let x3—>o), for jt>k let

x3i-i—*x3i and xn—>b (that is the zero points to the left of xk are moved

to the left and the zero points to the right of xk are moved to the right)

until |y(cn+i)| = |y(cyv)| = ■ ■ ■ =\yic3.)\ =\yicm)\ for some m

€£ {/i» J21 ■ • • 1 js, n + 1}. Continuing in this manner we can find a

solution y(x) = V2ix) ES such that | ̂ (cn+i) | = | ¥s(c<) [ ^ | ̂ (cy) | for

some/<w + l and all i^j, i<n + l. In a manner similar to that used

to find ^i(x) we can find a solution ^(xjGS such that l^sfcn+i)!

= I *a(c,) I ^ I *3(cy) I for all in*j,i<n+l. Comparing ^(x) and ^(x)

we conclude, from the continuous dependence of solutions on Xi, x2,

• ■ ■ , x„, that the solution <£(x) of the theorem exists. Further, since

Vi(a)=b (for Z,ny = 0) implies there is no solution of Z„y = 0 with n

zeros in (a, b), we conclude 4>(x) is a solution of Z„+iy = 0 but not of

7_„y = 0. Hence, after multiplying qb(x) by a nonzero constant if neces-

sary, we may write (p(x) =qbn+i(x) + E"=i a.^.'(x) (we drop the re-

quirement here that the solution be a member of 5).

We shall now show that this solution $(x) has the desired extremal

property. Suppose it does not, then there is a solution z(x) =0„+i(x)

+ E?=i b4>iix) such that maxie[o,6]|z(x)| <maxxe[a,6]|0(x)|

= |</>(Ci)| (i=l, 2, ■ • • , n + 1). We shall for definiteness assume

<£(a)>0. Then 0(ci)-z(ci)>O, (/»(c2)-z(c2)<0, •••. Hence Mx)

— z(x)= E"=i iai — bi)<t>iix) vanishes at least once in (ci, c2), (c2, c3),
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• • • , (cn, cn+i) and hence has n zeros in (a, b). However, d>(x) —z(x)

is then a solution of Lny = 0 with n zeros in (a, b) which is impossible

since rjx(a) ̂ b, by [2].

Corollary. Let Ln+ky=^i^i pn+k,i(x)y'-i) = 0 (k = 0, 2) be a pair

of linear differential equations, where pn+k,n+k(x)^Q (k = 0, 2), «^1

and all the coefficients are continuous on [a,b] and b^r]i(a) for £ = 0,2

(if r]i(a) does not exist, b may be chosen arbitrarily). Suppose that if z(x)

is a solution of Lny = 0, then it is also a solution of Ln+2y = 0. Let

{(pi(x)} (i=l, ■ ■ ■ , n) be a fundamental set of solutions of Z„y = 0.

Let 4>n+2(x) be a solution of Ln+2y = 0 which has n + l distinct zeros in

(a, b) located at Xi<x2< • • • <xn+i such that maxie[aill]|0„+2(x)|

= maxie[llils]|(p„+2(x)| = • • • =maxie[ln+Il] |<pn+2(x)| (i.e. </>»+2(x) is

the solution <p(x) of the theorem). Let the points at which their extreme

values are attained be denoted by Cx, c2, ■ ■ ■ c„+2 respectively. Let <pn+i(x)

be a solution of Zn+2y = 0 which satisfies the conditions <£(c;)=0 for

i=l, 2, ■ • ■ , n + l. Then the solution <p(x) of Zn+2y = 0, such that

<p(x) =4>n+i(x)+ Z"-i a%<Pi(x) and such that maxxe[a,i,]|<p(x)| is mini-

mal, is<p(x) =<p„+2(x).

Proof. We first note that <p„+i(x) is not a solution of Lny = 0 since

it has n + l zeros on [a, b), hence it is independent of <p,(x) (*=1, 2,

•••,»). Further it is independent of </>n+2(x) since the zeros are dif-

ferent. Suppose now <pn+2 does not have the desired extremal property.

Then there is a solution z(x)=</>n+2(x) + Z?-* bjd>i(x) such that

max,£[o,s] |z(x)| <maxie[(I,6]|(p„+2(x)|. We shall assume <pn+i(a)>0.

In particular <pn+i(ci) — z(cx) >0, <pre+2(c2) — z(d) <0, • • • , but, since

<pn+i(ci)=0 (i=l, ■ ■ ■ , n + l), <pn+z(ci)—[z(ci)—bn+icpn+i(ci)] has

these same properties for i = 1, ■ ■ ■ , n + l. Hence <p„+2(x)

— [z(x)— bn+x<pn+x(x)]= — Z"-i brf>i(x) vanishes at least once in

(ci, Ci), (d, cz), ■ ■ • , (cn, c„+i) and hence has n zeros in (a, b). But,

since 771(a) ̂b for Z„y = 0 and — Z"-o brf>i(x) is a solution of L„y

= 0, we conclude that bi = 0 (i = 1, • • • , «). Hence z(x)

= <pn+2(x)+bn+x<t>n+i(x). However z(cx)=<pn+z(cx), contradicting the

assumption that <p«+2(ci) =maxxeta,!)]|<p„+2(x)| >maxlSta,6]| z(x) |.

Hence <pn+i(x) is the desired solution.

Examples. (1) Let Ln+ky=y<n+k) = 0 (k = 0, 1), a=-l, b = l, and

<bi(x) =x'_1 (* = 1, 2, • • • , n + l). In this case the solutions in question

are polynomials of degree n with leading coefficient one. The function

<b(x) of the theorem, as in well known, is the Tchebycheff polynomial

Tn(x) = (i)"_1 cos [n cos_1x].

(2) Letn = 2m + 1 and let
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m+kli m+k/2

Ln+ny = y(n+i) +  E *y»+*-» +  zZ   zZ i2jYn+k-»
i=l j-i      i<j

m+kli

+ E E E i^y-4*-" + • • •
m=3       ><m     i<j

+ (l2-22- . . . • (» + V2)2)y' =0,

where (& = 0, 2), a = 0, b = 2ir and<£i(x) = l,02(x) =sin x, <£3(x) =cosx,

• • • , 0n(x)=coswx, 0„+i(x)=sin (m-f-l)x, $n+2(x)=cos (m + l)x.

Thus we are considering the usual Fourier series partial sum of order

m + 1 with leading coefficient one. The function (pn+2(x) =cos (m + l)x

is the function of the corollary.
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