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1. A basic question in the theory of varieties of groups is whether

the laws of every group are finitely based. Two classes of groups for

which an affirmative answer has been given are the class of nilpotent

groups (R. C. Lyndon [6]) and the class of finite groups (Sheila Oates

and M. B. Powell [8]). In this paper we give an affirmative answer

for a class of groups closely related to these two classes, namely, the

class of groups for which some finite term of the upper central series

has finite index. The proof of our main result uses the result of Oates

and Powell, and also depends heavily on the method developed by

L. G. Kovacs and M. F. Newman in [5] to prove that result. Our

notation follows that of  [S].

Suppose that w(xx, • ■ ■ , x„) is any law. We define laws

wr(xi, • • • , x„+r) by

W0(XX,  •  •  • , Xn)   = W(XX,  •  •  • , Xn) \

Wr(xx, ■  ■  ■ , Xn+r)  =   [wr_i(xi,  •  ■  • , Xn+r_i), Xn+r], r > 0.

The variety defined by wT(xx, • • • , xn+r) is denoted by 2Cr. We can

now state our main result.

Theorem 1. If SB0 can be generated by a single finite group, then for

every integer r3;0 there is an integer s(>0) depending only on

wr(xi, • • • , x„+r) such that any subvariety of SBr is generated by its

s-generator free group.

This has the

Corollary 1. Every subvariety of 9Br has a finite basis for its laws.

Proof. Suppose that some subvariety U of 2Br does not have a

finite basis for its laws. Then it is not difficult to see that the set of

subvarieties of 2Br which have a finite basis for their laws does not

satisfy the minimum condition (with respect to partial order by

inclusion). From Theorem 1 we may conclude that the lattice of sub-

varieties of Sffir is the dual of the lattice of verbal subgroups of the

free group Fs of rank s of 9Br, and hence the verbal subgroups of Fs

do not satisfy the maximum condition. Since 2B0 can be generated by

a finite group, for every finitely generated free group  F of 2Br,
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F/w0(F) is finite [7, Theorem 14.2]. Also, it is clear that wn(F) is a

finitely generated nilpotent group of class at most r. In particular

then, 77 is a finitely generated nilpotent-by-finite group, and so even

satisfies the maximum condition for subgroups, a contradiction.

We can now also prove

Theorem 2. If G is a group such that some finite term of the upper

central series of G has finite index, then there is a finite basis for the laws

ofG.

Proof. Suppose that the rth term of the upper central series of G,

N say, has finite index. If we put var(G/N) for the variety generated

by G/N, the theorem of Sheila Oates and M. B. Powell [8] tells us

that var(G/N) has a finite basis for its laws. Let w(xi, • • • , x„)

be a law defining war(G/N). Then clearly, G satisfies the law

[w(xi, • • • , xn), xn+i, ■ ■ ■ , xn+r]. The result now follows from Corol-

lary 1.

As a special case of Theorem 2 we have

Corollary 2. If yt is a nilpotent variety and SB a variety generated

by a finite group, then there is a finite basis for the laws of 51c W237

Proof. Suppose 2J3 is generated by the finite group 77. Let F he the

free group of countably infinite rank of yi. Then, putting G=FXH,

we have 9lVJ2B = var(c7), and G clearly satisfies the hypotheses of

the theorem.

Corollary 3. Suppose that G is a group with a normal subgroup M

of finite index such that some finite term of the lower central series of Mis

finite. Then there is a finite basis for the laws of G.

Proof. Suppose that the &th term of the lower central series of M

is finite. Then, by the corollary to Theorem 2 of [3], the (2&)th term

of the upper central series of G has finite index. The result then fol-

lows.

Finally, we observe without proof that the converse of Theorem 1

is true for nilpotent-by-finite groups. That is, if every subvariety of

the variety generated by a nilpotent-by-finite group can be generated

by a finitely generated group, then some finite term of the upper

central series of that group has finite index.

2. There is only the proof of Theorem 1 remaining. We have ob-

served in the proof of Corollary 1 that the finitely generated free

groups of 3Br (and so of any subvariety of 237) are nilpotent-by-finite

groups and so are residually finite. From this it follows that any sub-

variety of 237 is generated by its finite groups. But then it follows
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from a theorem of D. C. Cross [4, Theorem l], that any subvariety

of 2Br is generated by its critical groups. Thus, if we can put a bound

on the numbers of generators of critical groups in 2Br, we are finished.

Note that since 2B0 can be generated by a finite group there exist

integers e, m, c such that [5, Corollary]

(i) the exponent of groups in SBo divides e; (ii) every chief factor

of groups in SBo has order at most m; (iii) every nilpotent group in SBo

has class at most c.

We start with two trivial lemmas.

Lemma 1. If G is a finite group in SBr and H/K is a chief factor of

G such that H%w(G), then H/K^Z(G/K), the centre of G/K.

Proof. Since w0(G) =w(G)^H and wT(G) = 1, there is an integer i

such that l^i^r and wf-i(G)-K^H, Wi(G)r\H^K. The result fol-

lows immediately.

Lemma 2. There is a bound on the class of nilpotent groups in 2Br.

Proof. If G is nilpotent, it follows immediately that the (r+c + l)th

term of the lower central series of G is trivial.

Now let G be a critical group in 2Sr. w(G) is nilpotent, and so, if

w (G) 9^1, it must be a p-group for some prime p. There are three

cases to consider:

(1) w(G) = l.

(2) w(G)^l, p divides | w(G) \, and p divides e.

(3) w(G)t£1, p divides | w(G)\, and p does not divide e.

We deal with each case separately.

(1) Since 9So can be generated by a finite group, there are only a

finite number of critical groups in 9Bo [8, Theorem 3]: hence if

w(G) =1, G£2Bo and there is a bound, sx say, on the number of gen-

erators of G.

(2) The proof of (2) is essentially a reproduction of the proof of

[5, §3]; it is quite long and technical. We shall only indicate where

the proof differs from that of [5] and refer the reader to [5] for

details.

Let G be critical, F the Fitting subgroup and <t> the Frattini sub-

group of G. If we can bound | l7/$| , we have a bound on the number

of generators of G. Since w(G) is nilpotent, F^w(G), and so G/FE$3o-

By [l, Theorems 1,7] Gaschiitz, A/$ is a direct product of minimal

normal subgroups Mi/#, ■ ■ • , Mx/Q of G/$, and A/<i> has a comple-

ment A/$ in G/$. It is an easy deduction from [8, Lemma 2.4.2] and

Lemma 2 that l^c+r.
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Observe that from (ii) and Lemma 1 either | Tfcf,-/<I»| s=m or

|7kf,-/$| =p. Since p divides e, p^m, and so | Af,-/$| ^m, l^i^l.

Hence | F/$\ is bounded.

To obtain a bound for the order of L/$, the only modification to

the argument of [5] is that the series defined in the final paragraph of

p. 532 is replaced by the following series:

F = 27 >   • • •  > 77 = w(G) > 77+1 > > Fk+t = 1,

where 77 > • • • > Fk is the series obtained by refining the lower

central series of F/w(G) with terms corresponding to the lower Frat-

tini series of its factors; and Fk+i = Wi(G), O^i^t. Clearly (Sr The

proof of [5, Theorem 3.5] carries over for 0 ^ igj k; and for k<i^k+t,

it is a consequence of the definition of wT.

Suppose that s2 is the bound on the number of generators of G given

by this method.
(3) Suppose that G is critical. Since p does not divide e, we have

w(G) = F, the Fitting subgroup of G, and F is complemented in G, by

77 say. Now if $ is the Frattini subgroup of F, then Lemma 1 gives

us that H acts trivially on F/$. Thus 77 centralizes F [2, Theorem

12.2.2], and so 77= 1. Hence G is critical, nilpotent of class at most r

and so can be generated by r elements [4, Theorem 8].

Now, put s = max(si, s2, r), and we are finished.
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