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HARMONIC OSCILLATOR1
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1. The following theorem, concerning solutions of

(1.1) y" + [1 +f(x) + h(x) cos 2r,x]y = 0,

was proved by Atkinson in the cases ct = 1 (where the sum in (1.6) is

empty) and <x = 2; see [l, p. 349 and p. 355]. In [3], Kelman and

Madsen formulated the general result (a = l, 2, • • •) and proved it

using different methods.

Theorem 1.1 [3]. Letf(x)EL1[0, oo); h(x) of bounded variation on

[0> °°) for which there exists an integer a>0 satisfying

/OO /»   CO| h\adx = oo    and     J     | h\a+1dx < oo ;

r) > 0 a constant satisfying

(1.3)    0 < r\ y£ k/j,    where    l^Ha-1    and    1 ^ j ^ a,

and, if a is odd,

(IA) 0 < V ̂  a/j       for] = 1, 3, • • • , a.

Then for even integers 2j, 2^2j^a, there are real-valued rational func-

tions C2j = C2j(n) of v finite on (1.3)-(1.4), with the following property:

There exists a one-to-one correspondence between solutions y(x) of (1.1)

and pairs of constants (ax, a^) such that

y = ax sin 6(x) + a2 cos B(x) + o(l),

y' = ax cos 8(x) — a2 sin 8(x) + o(l),

(1.6) 6(x) = x +    2   e2j f h*i(s)ds.

For related (less precise) results, see references in [3] to J. G. van

der Corput.

Using a device from Hartman [2], we shall give a somewhat more

Received by the editors September 29, 1966.

1 This research was supported by the Air Force Office of Scientific Research,

Office of Aerospace Research, United States Air Force, under AFOSR Contract No.

F 44620-67-C-0098.

533



534 PHILIP HARTMAN [June

transparent proof and, at the same time, replace (1.1) by the more

general equation

M -l

(1.7) y" +    1 + 2fix) + 2 Z *-(*) cos (2^mx + ym) \y = 0.
m=0 -I

It should be pointed out that Atkinson [l ] had used a related method

for obtaining Theorem 1.1 for a = 2 and had noted that this argument

can be used to show the validity of the following result for a = 2,

h0 = 0, 71=72 =  • • • =Jm = 0.

Theorem 1.2. Let fix)ELx[0, oo); h0ix), • • • , hMix) functions of

bounded variation on [0, oo) for which there is an integer <x>0 satisfying

M      /» oo

(1.8) Z I      \hM\a+1dx< oo;
m=oJ

let ?7o = 0<77ig  • • • g?7m be constants with the property that

(1.9) | Vm(i) + r)mm ± • • • + Vm(v) \   7^ t,       where r = 1, • • • , v,

whenever

/OS        V

n I hm{j) | dx = oo ;
3=1

finally, y0 = 0 and yi, ■ ■ ■ , yu are arbitrary constants. Then there exists

a one-to-one correspondence between solutions y(x) of (1.7) and pairs of

constants (<Zi, a/) such that

y = ai sin 0(x) + a2 cos 0(x) + oil),

y' = ai cos 0(x) — a2 sin 0(x) + oil),

0(x) = x +   I    hods
J o

+ z Zc/M(cosr/[M]) I n^o-)^
(1.11) fL=1 IM J 0    j'=l

I[v\ = (»(1), ± w(2), • • • , ± »0*)),

IV [M]   = 7m(l)   + 7m(2)   ±     •   "   •     i 7m(ji),

c/M = cm(i),±m(2),...,±mM are rational functions of inmm, ■ ■ ■ , vmW)

which are finite for (1.9), owrfZ^id *s ^e sum mer ^e sei °f indices I [p]

= (m(l), + m(2), • ■ ■ , ±m(jj.)) for which Q^m(j)^M,
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rim'i-j + ymm +  ■ ' ■ ± Vm(n) = 0 and

/.  CO       (J

JI hm(j)ds is not convergent.
0      3=1

-Remark 1. The rational functions cmm,±m(2),...t±mM are indepen-

dent of the solution y(x), oi the function f(x), and of the functions

(hn, ■ ■ ■ , hM) within the class of sets of functions (h0, • ■ ■ , h;u) ior

which the convergence properties of the integrals f'^\hmU)dx do not

vary. Note that if ju = l, then (1.12) can hold only for m(l)—0.

Remark 2. If, for some k on O^k^M, hk(x)=0 or more generally,

fx\hk\dx< co, then the corresponding term 2hk(x) cos(2r]kX+yk) in

(1.7) can be considered part of the term 2f(x). In this case, no m(j) = k

occurs in (1.9), (1.11), and (1.12).

Remark 3. In the special case (1.1) of (1.7), we have h0(x)=0,

rlmu)=V for all j §; 1, and (1.9) is equivalent to (1.3)—(1.4). Also the first

part of (1.12) cannot hold unless u = 2j is even (and there are/ signs

+ and / signs -), so that (1.10)—(1.11) reduce to (1.5)—(1.6). (In

order to see the equivalence of (1.9) and (1.3)—(1.4), let u he the num-

ber of + signs in | +r]mm +r;m(2) + • • • + rjmM |, so that the conditions

on rj become 0<| 2/x —v\w?£t for u, r = l, • • • , v and v = l, • ■ ■ , a.

If a is odd, this reduces to (1.3)—(1.4). If a is even, this reduces to

(1.3)—(1.4) and the apparently additional conditions 0<r)9^a/j for

3 = 2, 4, ■ • • , a. But these additional conditions are contained in

(1.3).

2. Proof of Theorem 1.2. Introduce the abbreviation

M

F(x) = 52 hm(x) cos (2nmx + ym).
OT—0

From the Priifer transformation

(2.1) y(x) = r(x) sin0(«),        y'(x) = r(x) cos<p(x),

and (1.7), we get

(2.2) d log r = — F(x) sin 2<j>dx — f(x) sin 2<bdx,

(2.3) dtp = dx + F(x)(l - cos 2tb)dx + f(x)(l - cos 2tb)dx.

Following a device of Hartman [2], the last relation will also be used

in the form

(2.4) ds = dtb(s) -f(s)(l - cos 2tb(s))ds - F(s)(l - cos 2tb(s))ds.

In view of (2.2),
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M     /• x

(2.5)    log r(x) = c + o(l) + Z I    hm cos i2rjms + ym) sin 2ipis)ds;
zn=0"   0

also, we have

/>  X /*  XFds - j    F cos 2d>ds.
0 "^ 0

Since hm is of bounded variation on [0, oo),

/zm(x) cos (2?7mx + ym)dx =   lim    I exists if -nn ^ 0.
0 t—«  J o

Thus

0(*J   =!X + C + oil)  +   J     M*

(2.7)v M     nx

— Z j   7» cos (2??m5 + ym) cos 2<fcfo.

In (2.5), (2.7) and below, c will always denote a constant not neces-

sarily the same one. The analogue of (2.6) will be used repeatedly

below.

Lemma 2.1. Let </>(#) be as above; g(x) a function of bounded variation

on [0, oo), g(x) =o(l) as x—>oo ; a, r, 70, 7 and 5 real constants such that

(2.8) I <r I  ^ I r I ,       t^O.

XTsew, as x—> 00,

g(s) cos(2o-$ + 70 — 7) cos(2t<£ — 5)ds
(2.9) Jo

= c + oil) + Hr2 - a2)-'{  •■■},

where { • ■ • } is the expression

Ml 1 n x

{•••}= M EEE.        ghm
m=0 j=Q  k=— 1        "  0

X sin [2(er + i-l)'Vm)s + 7° - 7 + (-DJ7m]

Ml 1 /• 1

X sin [2(t + k)4> - &]ds + t2 Z Z   Z  «* J    g*»
(2.10j m=o y=o *=-i    "^ 0

X COS  [2(<7 + (-l)V)' + 7° - 7 + (~l)y7m]

X cos [2(r + k)d> - S]ds,
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e±i = 1 and to = —2.

We shall only need the cases 7=5 = 0 and 7 = 6 = 7r/2 for the asymp-

totic behavior of (p(x), and the cases 7=7r/2, 5 = 0 and 7 = 0, 5 = 7r/2

for r(x).

Proof. Let I denote the integral on the left of (2.9). Replace ds

in I by its value in (2.4) and integrate the resulting first term by parts

to obtain

I = c + o(l) + (tr/r) f g(s) sin (2<ts + y° - 7) sin (2rtp - 5)ds
•I0

(2.11)

-  J    g(s) cos (2trs + 70 - 7) cos (2rtt> - 8)F(s)(l - cos 2tb)ds.
•I 0

Use (2.4) in the first integral on the right of (2.11) and integrate the

first term by parts,

I = C + o(i) + (a/r)U

- (<r/r) I    g(s) sin (2o-s + 70 - 7) sin (2rtf> - 5)F(y)(l - cos 2tb)ds
•I 0

- I    g(s) cos (2(75 + 70 - 7) cos (2t<£ - 5)^(^(1 - cos 2tj>)ds.
J 0

In view of the relations, for % = sin or x=cos,

2x(2rcb - 5)(1 - cos 2tp)

1

= -   Z   tkx[2(r + k)tp - 8],
*=-i

and

2X(2<t5 + 7° - 7)^(^)

M       1

= Z Z hm(s)X[2(a + (-D'Vnds + 7° - 7 + (-1)*7»],
m=0 ;'=0

formula (2.9) follows. This completes the proof.

On tp(x). We now show, by an induction on v for l^c^a+l,

that, under the assumption (1.9), tp(x) has the form
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d>ix) = x + c + oil) +   I    hods
J 0

v— 1 /» x    jt

+   Z Zc/w(cos r/b.]) I     ]JhmU)ds
n=l JM " 0   j=l

(2.12) +   ZZ'or.rw  rilhmu)
t=1 /[/»] «7 0    3=1

X cos(2iV/[,]5 + rV[„])cos 2rtbds

V /» X      »

+ z Z'7,i>] i ha™u)
t=i zm *» o   j=i

X sin(2A7wS + r/[P])sin 2rij>ds,

where

Nl[y]   =  TJm(l)   +  r]m(i)   +   •   •   •   +  7)m(»),

Clip] = cm(l),±m[2],- • -,±m(ji) and (It,7W =flr,1j(l),+m(2),---,+i»Wi OrJlv]

= &T,m(i),±m(2),.--,±mM are rational functions of (?/m(i), • ■ • , nmM) and

of ivm(i), ■ ■ ■ , Vmw), respectively, finite for (1.9); Z^lci is the sum

over the sets of indices (m(l), + m(2), • • • , ±mip)), 0g»z(j)gil7

for which

/CO      Ji

n Am(j)rfxis not convergent;
3 = 1

finally Z'jm is the sum over all sets l[v]= imil), ±m(2), • ■ • ,

+ m(v)) for which

/CO       C

n i *»o>i <**=«>.
3-1

The formula (2.7) can be written in the form (2.12) for v = l. We

assume (2.12) for some given v, lgj'ga. Then the assumption (1.9)

makes Lemma 2.1 applicable to each term in the last two sums of

(2.12), with7 = 5=7r/2 in the last sum and 7 = 5 = 0 in the next to last

sum, a=nmci)± • • • ±1»(.), 7°=7m(i)± ••• ±T»w- and g(x)

= n^««) iorj = l, ■ ■ • ,v. This shows the validity of (2.12) when v is

replaced by v + 1, since

/'x r~^~1
Yifimu) cos(2Nnv+i]S + Tn,+1])ds = c + o(l)

0     3=1
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if the first part of (2.13) does not hold. Hence (2.12) is valid for

v =a + l. Thus d)(x) can be written in the form

(2.15) tb(x) = c° + o(l) + 6(x),

where 6(x) is independent of the solution y(x) and is given by (1.11).

On r(x). Starting with  (2.5), the cases y=ir/2, 5 = 0 and 7 = 0,

5=7r/2 of Lemma 2.1 imply, by an induction on v, l^v^a + 1, that

log r(x) can be written in the form

log r(x) = c + o(l)

"_1       * rx  "

+   Z Zcrw(sin r'w)  I     T[hmU)ds
(i=i im " o   j=i

r=l JW

/> X     vY[hm(j) cos(2AjW5 + r/w)sin 2rtpds
o   y=i

' *

+     2-1   '   .'br.Tlvl

7=1 I[v]

/» X       V

Y[kmu) sin(2Nnv]S + rjW)cos 2rtpds,
a   y=i

in notation analogous to (2.12).

-Thus, the case j'=a + l shows that

(2.17) r(x) = [cl + o(l)] expp(x),

where p(x) is independent of the solution y(x) and

(2.18) p(x) =   X) Zciw(sin IV w)  I     J\hmU)ds.
d=l i w Jo    i-l

Completion of the proof. Let yx(x), y2(x) be two solutions of (1.7)

with the Wronskian

(2.19) yxyi -y{y2= 1.

Then, by (2.1), (2.15) and (2.17), for/=l, 2,

y3- = [c] + o(l)]eM sin [c] + o(l) + 6(x)],

yj = [c] + o(l)]eM cos [c] + o(l) + 6(x)},



540 PHILIP HARTMAN

where (cj, c)) are the constants (c°, c1) belonging to y,(x). By (2.19),

r  1 1   ,      ,..-,  2p(»)   .     , 0 0
LciC2 + o(l)Je       sin(ci — c2 + o(l)) = 1.

Thus, according as

11.0 o
(2.21) cic2 sin 7i — c2) = 0    or    5^0,

it follows that

(2.22) lim pix) = + oo    or    exists (finite).
X—+00

Actually, the first alternative in (2.22) cannot hold. In order to see

this, consider the differential equation obtained by changing the signs

of the ym in (1.7),

y" + \l + 2/7) + 2 Z *»(*) cos i2Vmx - ym) \y = 0,
L m=0 J

and let 0i(x), pi(x) belong to this equation as 0(x), p(x) in (1.11),

(2.18) belong to (1.7). Then, the deduction of (2.22) shows that

lim pi(x) = + oo    or   exists (finite).
X—*oo

But 0(x) ==0i(x) and Pi(x) = —pix); thus p( oo) y£ + oo . Consequently,

changing c1, (2.17) becomes r(x) =c1 + o(l), p(x) =;0.

-Correspondingly, by the formulae following (2.19),

yt = [c] + oil)} sin 7- + o(l) + <?(*)),

yi = [c] + oil)} cos (c- + o(l) + 0(x))

and c\c\ sin(c? —c2)5^0. Thus, for a solution y(x)^0, cl>0 in r(x) =cx

+o(l), and linearly independent solutions yi, yi belong to pairs

(c\, c{), (c°2, c\) with c\t^c\ (mod ir). This completes the proof of

Theorem 1.2.
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