ON A CLASS OF PERTURBATIONS OF THE HARMONIC OSCILLATOR¹

PHILIP HARTMAN

1. The following theorem, concerning solutions of

(1.1)
$$y'' + [1 + f(x) + h(x) \cos 2\eta x]y = 0,$$

was proved by Atkinson in the cases $\alpha = 1$ (where the sum in (1.6) is empty) and $\alpha = 2$; see [1, p. 349 and p. 355]. In [3], Kelman and Madsen formulated the general result ($\alpha = 1, 2, \cdots$) and proved it using different methods.

THEOREM 1.1 [3]. Let $f(x) \in L^1[0, \infty)$; h(x) of bounded variation on $[0, \infty)$ for which there exists an integer $\alpha > 0$ satisfying

(1.2)
$$\int_{-\infty}^{\infty} |h|^{\alpha} dx = \infty \quad and \quad \int_{-\infty}^{\infty} |h|^{\alpha+1} dx < \infty;$$

 $\eta > 0$ a constant satisfying

(1.3)
$$0 < \eta \neq k/j$$
, where $1 \leq k \leq \alpha - 1$ and $1 \leq j \leq \alpha$,

and, if α is odd,

(1.4)
$$0 < \eta \neq \alpha/j \quad \text{for } j = 1, 3, \cdots, \alpha$$

Then for even integers 2j, $2 \le 2j \le \alpha$, there are real-valued rational functions $c_{2j} = c_{2j}(\eta)$ of η finite on (1.3)–(1.4), with the following property: There exists a one-to-one correspondence between solutions y(x) of (1.1) and pairs of constants (a_1, a_2) such that

(1.5)
$$y = a_1 \sin \theta(x) + a_2 \cos \theta(x) + o(1), y' = a_1 \cos \theta(x) - a_2 \sin \theta(x) + o(1),$$

(1.6)
$$\theta(x) = x + \sum_{2 \leq 2j \leq \alpha} c_{2j} \int_0^x h^{2j}(s) ds.$$

For related (less precise) results, see references in [3] to J. G. van der Corput.

Using a device from Hartman [2], we shall give a somewhat more

Received by the editors September 29, 1966.

¹ This research was supported by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Contract No. F 44620-67-C-0098.

PHILIP HARTMAN

transparent proof and, at the same time, replace (1.1) by the more general equation

(1.7)
$$y'' + \left[1 + 2f(x) + 2\sum_{m=0}^{M} h_m(x) \cos(2\eta_m x + \gamma_m)\right] y = 0.$$

It should be pointed out that Atkinson [1] had used a related method for obtaining Theorem 1.1 for $\alpha = 2$ and had noted that this argument can be used to show the validity of the following result for $\alpha = 2$, $h_0 \equiv 0$, $\gamma_1 = \gamma_2 = \cdots = \gamma_M = 0$.

THEOREM 1.2. Let $f(x) \in L^1[0, \infty)$; $h_0(x), \cdots, h_M(x)$ functions of bounded variation on $[0, \infty)$ for which there is an integer $\alpha > 0$ satisfying

(1.8)
$$\sum_{m=0}^{M} \int_{\infty}^{\infty} |h_{M}|^{\alpha+1} dx < \infty;$$

let $\eta_0 = 0 < \eta_1 \leq \cdots \leq \eta_m$ be constants with the property that

(1.9) $|\eta_{m(1)} \pm \eta_{m(2)} \pm \cdots \pm \eta_{m(\nu)}| \neq \tau$, where $\tau = 1, \cdots, \nu$, whenever

$$0 \leq m(j) \leq M, \quad 1 \leq \nu \leq \alpha, \quad \int^{\infty} \prod_{j=1}^{\nu} |h_{m(j)}| dx = \infty;$$

finally, $\gamma_0 = 0$ and $\gamma_1, \dots, \gamma_M$ are arbitrary constants. Then there exists a one-to-one correspondence between solutions y(x) of (1.7) and pairs of constants (a_1, a_2) such that

(1.10)

$$y = a_{1} \sin \theta(x) + a_{2} \cos \theta(x) + o(1),$$

$$y' = a_{1} \cos \theta(x) - a_{2} \sin \theta(x) + o(1),$$

$$\theta(x) = x + \int_{0}^{x} h_{0} ds$$

$$+ \sum_{\mu=2}^{\alpha} \sum_{I[\mu]} c_{I[\mu]} (\cos \Gamma_{I[\mu]}) \int_{0}^{x} \prod_{j=1}^{\mu} h_{m(j)} ds,$$

$$I[\mu] = (m(1), \pm m(2), \cdots, \pm m(\mu)),$$

$$\Gamma_{I[\mu]} = \gamma_{m(1)} \pm \gamma_{m(2)} \pm \cdots \pm \gamma_{m(\mu)},$$

 $c_{I[\mu]} = c_{m(1),\pm m(2),\dots,\pm m(\mu)} \text{ are rational functions of } (\eta_{m(1)},\dots,\eta_{m(\mu)})$ which are finite for (1.9), and $\sum_{I[\mu]}$ is the sum over the set of indices $I[\mu]$ = $(m(1),\pm m(2),\dots,\pm m(\mu))$ for which $0 \leq m(j) \leq M$,

(1.12)
$$\eta_{m(1)} \pm \eta_{m(2)} \pm \cdots \pm \eta_{m(\mu)} = 0 \text{ and}$$
$$\int_{0}^{\infty} \prod_{j=1}^{\mu} h_{m(j)} ds \text{ is not convergent.}$$

-REMARK 1. The rational functions $c_{m(1),\pm m(2)},\ldots,\pm m(\mu)$ are independent of the solution y(x), of the function f(x), and of the functions (h_0, \cdots, h_M) within the class of sets of functions (h_0, \cdots, h_M) for which the convergence properties of the integrals $\int^{\infty} \prod h_{m(j)} dx$ do not vary. Note that if $\mu = 1$, then (1.12) can hold only for m(1) = 0.

REMARK 2. If, for some k on $0 \le k \le M$, $h_k(x) \equiv 0$ or more generally, $\int_{\infty}^{\infty} |h_k| dx < \infty$, then the corresponding term $2h_k(x) \cos(2\eta_k x + \gamma_k)$ in (1.7) can be considered part of the term 2f(x). In this case, no m(j) = k occurs in (1.9), (1.11), and (1.12).

REMARK 3. In the special case (1.1) of (1.7), we have $h_0(x) \equiv 0$, $\eta_{m(j)} = \eta$ for all $j \ge 1$, and (1.9) is equivalent to (1.3)–(1.4). Also the first part of (1.12) cannot hold unless $\mu = 2j$ is even (and there are j signs + and j signs -), so that (1.10)–(1.11) reduce to (1.5)–(1.6). (In order to see the equivalence of (1.9) and (1.3)–(1.4), let μ be the number of + signs in $|+\eta_{m(1)} \pm \eta_{m(2)} \pm \cdots \pm \eta_{m(\nu)}|$, so that the conditions on η become $0 < |2\mu - \nu| \eta \neq \tau$ for $\mu, \tau = 1, \cdots, \nu$ and $\nu = 1, \cdots, \alpha$. If α is odd, this reduces to (1.3)–(1.4). If α is even, this reduces to (1.3)–(1.4) and the apparently additional conditions $0 < \eta \neq \alpha/j$ for $j=2, 4, \cdots, \alpha$. But these additional conditions are contained in (1.3).

2. Proof of Theorem 1.2. Introduce the abbreviation

$$F(x) = \sum_{m=0}^{M} h_m(x) \cos (2\eta_m x + \gamma_m).$$

From the Prüfer transformation

(2.1) $y(x) = r(x) \sin \phi(x), \quad y'(x) = r(x) \cos \phi(x),$

and (1.7), we get

(2.2)
$$d \log \mathbf{r} = -F(x) \sin 2\phi dx - f(x) \sin 2\phi dx,$$

(2.3) $d\phi = dx + F(x)(1 - \cos 2\phi)dx + f(x)(1 - \cos 2\phi)dx.$

Following a device of Hartman [2], the last relation will also be used in the form

(2.4)
$$ds = d\phi(s) - f(s)(1 - \cos 2\phi(s))ds - F(s)(1 - \cos 2\phi(s))ds$$
.

In view of (2.2),

1968]

PHILIP HARTMAN

(2.5)
$$\log r(x) = c + o(1) + \sum_{m=0}^{M} \int_{0}^{x} h_m \cos (2\eta_m s + \gamma_m) \sin 2\phi(s) ds;$$

also, we have

$$\phi(x) = x + c + o(1) + \int_0^x F ds - \int_0^x F \cos 2\phi ds.$$

Since h_m is of bounded variation on $[0, \infty)$,

(2.6)
$$\int_0^\infty h_m(x) \cos \left(2\eta_m x + \gamma_m\right) dx = \lim_{T \to \infty} \int_0^T \quad \text{exists if } \eta_m \neq 0.$$

Thus

(2.7)
$$\phi(x) = \frac{\pi}{2}x + c + o(1) + \int_{0}^{x} h_{0}ds - \sum_{m=0}^{M} \int_{0}^{x} h_{m} \cos(2\eta_{m}s + \gamma_{m}) \cos 2\phi ds.$$

In (2.5), (2.7) and below, c will always denote a constant not necessarily the same one. The analogue of (2.6) will be used repeatedly below.

LEMMA 2.1. Let $\phi(x)$ be as above; g(x) a function of bounded variation on $[0, \infty)$, g(x) = o(1) as $x \to \infty$; σ , τ , γ^0 , γ and δ real constants such that (2.8) $|\sigma| \neq |\tau|$, $\tau \neq 0$.

,

Then, as $x \rightarrow \infty$,

(2.9)
$$\int_0^x g(s) \cos(2\sigma s + \gamma^0 - \gamma) \cos(2\tau \phi - \delta) ds = c + o(1) + 4(\tau^2 - \sigma^2)^{-1} \{ \cdots \}$$

where $\{ \cdot \cdot \cdot \}$ is the expression

[June

 $\epsilon_{\pm 1} = 1$ and $\epsilon_0 = -2$.

We shall only need the cases $\gamma = \delta = 0$ and $\gamma = \delta = \pi/2$ for the asymptotic behavior of $\phi(x)$, and the cases $\gamma = \pi/2$, $\delta = 0$ and $\gamma = 0$, $\delta = \pi/2$ for r(x).

PROOF. Let I denote the integral on the left of (2.9). Replace ds in I by its value in (2.4) and integrate the resulting first term by parts to obtain

$$I = c + o(1) + (\sigma/\tau) \int_0^x g(s) \sin(2\sigma s + \gamma^0 - \gamma) \sin(2\tau\phi - \delta) ds$$
(2.11)
$$-\int_0^x g(s) \cos(2\sigma s + \gamma^0 - \gamma) \cos(2\tau\phi - \delta) F(s)(1 - \cos 2\phi) ds$$

Use (2.4) in the first integral on the right of (2.11) and integrate the first term by parts,

$$I = c + o(1) + (\sigma/\tau)^2 I$$

- $(\sigma/\tau) \int_0^x g(s) \sin (2\sigma s + \gamma^0 - \gamma) \sin (2\tau\phi - \delta) F(s)(1 - \cos 2\phi) ds$
- $\int_0^x g(s) \cos (2\sigma s + \gamma^0 - \gamma) \cos (2\tau\phi - \delta) F(s)(1 - \cos 2\phi) ds.$

In view of the relations, for $\chi = \sin \alpha x = \cos \alpha$,

$$2\chi(2\tau\phi - \delta)(1 - \cos 2\phi)$$

= $-\sum_{k=-1}^{1} \epsilon_k \chi [2(\tau + k)\phi - \delta],$

and

$$2\chi(2\sigma s + \gamma^0 - \gamma)F(s)$$

= $\sum_{m=0}^{M} \sum_{j=0}^{1} h_m(s)\chi[2(\sigma + (-1)^j\eta_m)s + \gamma^0 - \gamma + (-1)^j\gamma_m],$

formula (2.9) follows. This completes the proof.

On $\phi(x)$. We now show, by an induction on ν for $1 \leq \nu \leq \alpha+1$, that, under the assumption (1.9), $\phi(x)$ has the form

1968]

$$\phi(x) = x + c + o(1) + \int_{0}^{x} h_{0} ds$$

$$+ \sum_{\mu=1}^{\nu-1} \sum_{I[\mu]} c_{I[\mu]} (\cos \Gamma_{I[\mu]}) \int_{0}^{x} \prod_{j=1}^{\mu} h_{m(j)} ds$$

$$(2.12) + \sum_{\tau=1}^{\nu} \sum_{I[\mu]}' a_{\tau,I[\nu]} \int_{0}^{x} \prod_{j=1}^{\nu} h_{m(j)}$$

$$\times \cos(2N_{I[\nu]}s + \Gamma_{I[\nu]}) \cos 2\tau \phi ds$$

$$+ \sum_{\tau=1}^{\nu} \sum_{I[\nu]}' b_{\tau,I[\nu]} \int_{0}^{x} \prod_{j=1}^{\nu} h_{m(j)}$$

$$\times \sin(2N_{I[\nu]}s + \Gamma_{I[\nu]}) \sin 2\tau \phi ds,$$

where

$$N_{I[\nu]} = \eta_{m(1)} \pm \eta_{m(2)} \pm \cdots \pm \eta_{m(\nu)},$$

 $c_{I[\mu]} = c_{m(1),\pm m[2],\dots,\pm m(\mu)}$ and $a_{\tau,I[\nu]} = a_{\tau,m(1),\pm m(2),\dots,\pm m[\nu]}$, $b_{\tau,I[\nu]} = b_{\tau,m(1),\pm m(2),\dots,\pm m(\nu)}$ are rational functions of $(\eta_{m(1)},\dots,\eta_{m(\mu)})$ and of $(\eta_{m(1)},\dots,\eta_{m(\nu)})$, respectively, finite for (1.9); $\sum_{I[\mu]}$ is the sum over the sets of indices $(m(1),\pm m(2),\dots,\pm m(\mu))$, $0 \le m(j) \le M$, for which

(2.13)
$$\eta_{m(1)} \pm \cdots \pm \eta_{m(\mu)} = 0$$
 and $\int_{j=1}^{\infty} \prod_{j=1}^{\mu} h_{m(j)} dx$ is not convergent;

finally $\sum'_{I[\nu]}$ is the sum over all sets $I[\nu] = (m(1), \pm m(2), \cdots, \pm m(\nu))$ for which

(2.14)
$$\int_{j=1}^{\infty} \prod_{j=1}^{p} \left| h_{m(j)} \right| dx = \infty.$$

The formula (2.7) can be written in the form (2.12) for $\nu = 1$. We assume (2.12) for some given ν , $1 \leq \nu \leq \alpha$. Then the assumption (1.9) makes Lemma 2.1 applicable to each term in the last two sums of (2.12), with $\gamma = \delta = \pi/2$ in the last sum and $\gamma = \delta = 0$ in the next to last sum, $\sigma = \eta_{m(1)} \pm \cdots \pm \eta_{m(\nu)}$, $\gamma^0 = \gamma_{m(1)} \pm \cdots \pm \gamma_{m(\nu)}$, and $g(x) = \prod h_{m(j)}$ for $j = 1, \cdots, \nu$. This shows the validity of (2.12) when ν is replaced by $\nu + 1$, since

$$\int_{0}^{x} \prod_{j=1}^{\nu+1} h_{m(j)} \cos(2N_{I[\nu+1]}s + \Gamma_{I[\nu+1]}) ds = c + o(1)$$

(2.15)
$$\phi(x) = c^0 + o(1) + \theta(x),$$

where $\theta(x)$ is independent of the solution y(x) and is given by (1.11).

On r(x). Starting with (2.5), the cases $\gamma = \pi/2$, $\delta = 0$ and $\gamma = 0$, $\delta = \pi/2$ of Lemma 2.1 imply, by an induction on ν , $1 \leq \nu \leq \alpha + 1$, that $\log r(x)$ can be written in the form

(2.16)

$$\log r(x) = c + o(1) + \sum_{\mu=1}^{\nu-1} \sum_{I[\mu]} c_{I[\mu]}^{*} (\sin \Gamma_{I[\mu]}) \int_{0}^{x} \prod_{j=1}^{\mu} h_{m(j)} ds + \sum_{\tau=1}^{\nu} \sum_{I[\nu]} c_{a_{\tau,I[\nu]}}^{*} \times \int_{0}^{x} \prod_{j=1}^{\nu} h_{m(j)} \cos(2N_{I[\nu]}s + \Gamma_{I[\nu]}) \sin 2\tau \phi ds + \sum_{\tau=1}^{\nu} \sum_{I[\nu]} b_{\tau,I[\nu]}^{*} \times \int_{0}^{x} \prod_{j=1}^{\nu} h_{m(j)} \sin(2N_{I[\nu]}s + \Gamma_{I[\nu]}) \cos 2\tau \phi ds,$$

in notation analogous to (2.12).

Thus, the case $\nu = \alpha + 1$ shows that

(2.17)
$$r(x) = [c^{1} + o(1)] \exp \rho(x),$$

where $\rho(x)$ is independent of the solution y(x) and

(2.18)
$$\rho(x) = \sum_{\mu=1}^{\alpha} \sum_{I[\mu]} c_{I[\mu]}^{*} (\sin \Gamma_{I[\mu]}) \int_{0}^{x} \prod_{j=1}^{\mu} h_{m(j)} ds.$$

COMPLETION OF THE PROOF. Let $y_1(x)$, $y_2(x)$ be two solutions of (1.7) with the Wronskian

(2.19)
$$y_1y_2' - y_1'y_2 \equiv 1.$$

Then, by (2.1), (2.15) and (2.17), for j = 1, 2,

(2.20)
$$y_{j} = [c_{j}^{1} + o(1)]e^{\rho(x)} \sin [c_{j}^{0} + o(1) + \theta(x)], y_{j}' = [c_{j}^{1} + o(1)]e^{\rho(x)} \cos [c_{j}^{0} + o(1) + \theta(x)],$$

1968]

where (c_j^0, c_j^1) are the constants (c^0, c^1) belonging to $y_j(x)$. By (2.19),

$$[c_1^{1}c_2^1 + o(1)]e^{2\rho(x)}\sin(c_1^0 - c_2^0 + o(1)) \equiv 1.$$

Thus, according as

(2.21)
$$c_1^{1} c_2^1 \sin(c_1^0 - c_2^0) = 0 \text{ or } \neq 0,$$

it follows that

(2.22)
$$\lim_{x \to \infty} \rho(x) = +\infty \quad \text{or exists (finite)}.$$

Actually, the first alternative in (2.22) cannot hold. In order to see this, consider the differential equation obtained by changing the signs of the γ_m in (1.7),

$$y'' + \left[1 + 2f(x) + 2\sum_{m=0}^{M} h_m(x) \cos(2\eta_m x - \gamma_m)\right] y = 0,$$

and let $\theta_1(x)$, $\rho_1(x)$ belong to this equation as $\theta(x)$, $\rho(x)$ in (1.11), (2.18) belong to (1.7). Then, the deduction of (2.22) shows that

$$\lim_{x \to \infty} \rho_1(x) = + \infty \quad \text{or} \quad \text{exists (finite)}.$$

But $\theta(x) \equiv \theta_1(x)$ and $\rho_1(x) \equiv -\rho(x)$; thus $\rho(\infty) \neq +\infty$. Consequently, changing c^1 , (2.17) becomes $r(x) = c^1 + o(1)$, $\rho(x) \equiv 0$.

-Correspondingly, by the formulae following (2.19),

$$y_j = [c_j^1 + o(1)] \sin (c_j^0 + o(1) + \theta(x)),$$

$$y'_j = [c_j^1 + o(1)] \cos (c_j^0 + o(1) + \theta(x))$$

and $c_1^1 c_2^1 \sin(c_1^0 - c_2^0) \neq 0$. Thus, for a solution $y(x) \neq 0$, $c_1 > 0$ in $r(x) = c_1^1 + o(1)$, and linearly independent solutions y_1 , y_2 belong to pairs (c_1^0, c_1^1) , (c_2^0, c_2^1) with $c_1^0 \neq c_2^0 \pmod{\pi}$. This completes the proof of Theorem 1.2.

References

1. F. V. Atkinson, The asymptotic solution of second order differential equations, Ann. Mat. Pura Appl. (4) 37 (1954), 347-378.

2. P. Hartman, On the zeros of solutions of second order linear differential equations, J. London Math. Soc. 27 (1952), 492-496.

3. R. B. Kelman and N. K. Madsen, Stable motions of the linear adiabatic oscillator, J. Math. Anal. Appl. (to appear).

THE JOHNS HOPKINS UNIVERSITY

540