ON THE METASTABLE HOMOTOPY OF O(n)

MARK MAHOWALD1

The purpose of this note is to present an alternate proof of the main result of [3]. In particular, we prove

THEOREM 1 (1 OF [3]). If k>4, a nontrivial stable real vector bundle over S^{4k} is the sum of an irreducible (2k+1)-plane bundle and a trivial bundle.

This result has several geometric applications and easily implies

THEOREM 2 (2 OF [3]). For
$$q < 2(n-1)$$
 and $n \ge 13$,

$$\pi_q(O(n)) = \pi_q(O) \oplus \pi_{q-1}(V_{2n,n}).$$

We will be only concerned with the proof of Theorem 1 in this note. Extensive calculation of $\pi_{q-1}(V_{2n,n})$ are given in [4].

The proof will be preceded by several lemmas which use the following notation. Let X be a space. The symbol X[k] means the (k-1)-connected fibering over X. $E_r^{s,t}(X)$ is the rth term in the Adams spectral sequence [1] for X leading to the group associated with ${}_2\pi_*^g(X)$. Thus $E_2^{s,t}(X) = \operatorname{Ext}_A^{s,t}(\tilde{H}^*(X; Z_2), Z_2)$, where A is the mod 2 Steenrod algebra. V_k is the fiber of $BSO_k \rightarrow BSO$.

LEMMA 1. If $t-s \le 4k$ and k>4, then

$$E_2^{s,t}(BSO_{2k+1}[2k+1]) \simeq E_2^{s,t}(BSO[2k+1]) \oplus E_2^{s,t}(V_{2k+1}).$$

PROOF. Let p be the smallest integer such that $2^p > 4k$. For p = 4a + b, $0 \le b \le 3$, let $j(p) = 8a + 2^b$. Let $i_p : BSO[j(p)] \to BSO$ be the usual inclusion. Then $i_p^* w_j = 0$ for all $j < 2^p$ [5]. If k > 4, then $BSO_{2k+1}[j(p)]$ is the total space of $i_p^! \gamma_{2k+1}$ where γ_{2k+1} is the bundle $BSO_{2k+1} \to BSO$. Therefore

$$H^{\boldsymbol{q}}(BSO_{2k+1}[j(p)]) \simeq \sum_{\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{q}} H^{\boldsymbol{u}}(BSO[j(p)]) \, \oplus \, H^{\boldsymbol{v}}(\boldsymbol{V}_{2k+1})$$

for $q \le 4k+1$ as Z_2 modules. Since i': $BSO[2k+1] \to BSO[j(p)]$ induces the zero map in cohomology if 2k+1>j(p) [5], we have

$$H^q(BSO_{2k+1}[2k+1]) \simeq \sum_{u+v=q} H^u(BSO[2k+1]) = H^v(V_{2k+1})$$

as A modules. This implies the lemma.

Received by the editors March 1, 1967.

¹ This work was supported in part by the U. S. Army Research Office (Durham).

COROLLARY 2. The projection $\bar{p}: BSO_{2k+1}[2k+1] \rightarrow BSO[2k+1]$ induces an epimorphism

$$\bar{p}_{\#}: E_{2^{s,t}}(BSO_{2k+1}[2k+1]) \to E_{2^{s,t}}(BSO[2k+1]).$$

LEMMA 3. Let ω_{4k} : $S^{4k} \rightarrow BSO[2k+1]$ be a generator of $\pi_{4k}(BSO[2k+1])$.

$$\omega_{4k}$$
 has filtration $\geq k-1$, $k \equiv 0, 1 \pmod{4}$, $\geq k-2$, $k \equiv 2 \pmod{4}$, and $\geq k$, $k \equiv 3 \pmod{4}$

in the Adams spectral sequence sense.

PROOF. Consider the diagram

$$S^{4k} \xrightarrow{i_f} BSO[4k] \rightarrow \cdots \xrightarrow{i_1} BSO[2k \times 1].$$

In cohomology each map i_u^* is zero if the connectivity increases. Maps between spaces which induce the zero map in cohomology have filtration ≥ 1 . Thus the question of filtration reduces to only counting the number of nonzero homotopy groups between 2k+1 and 4k in BSO.

LEMMA 4.
$$E_2^{s,t}(V_{2k+1}) = 0$$
 if $t-s = 4k-1$ and $s \ge k$, $k \equiv 0, 1$ (2) $\ge k+1$, $k \equiv 2, 3$ (4).

PROOF. Let $0 \le u < 8$ be such that $2k+1+u = 4k-1 \pmod{8}$. Let $0 \le v < 4$ be such that $k = v \pmod{4}$. It is an easy calculation to compute $\operatorname{Ext}_A^{s,t}(\tilde{H}^*(V_{2k+1}), Z_2)$ by minimal resolution [1] for t = 2k+1 + u + s and s = v, v + 1 (or one can use the tables in [4]). The Adams periodicity theorems [2] enable one to use this calculation to prove the lemma.

Now we can prove the main theorem if $k \not\equiv 2 \pmod{4}$.

PROOF OF THEOREM 1. Let $\bar{\alpha} \in E_2^{s,t}(BSO_{2k+1}[2k+1])$ project to the class in $E_2^{s,t}(BSO[2k+1])$ to which $[\omega_{4k}]$ projects. We are finished if we show that $\bar{\alpha}$ is a permanent cycle. Since $\bar{p}_t\bar{a}$ is not a boundary, $\bar{\alpha}$ is not a boundary. If $\delta_r\bar{\alpha}=\beta$, then β must be in the summand $E_2^{s,t}(V_{2k+1})$ but Lemma 4 says that this group is zero for all possible s and t values that β might have.

To finish the proof of Theorem 1, we just need to indicate how to fix the argument for $k \equiv 2$ (4). Let $\alpha_i \in H^{u(i)}(V_{2k+1})$ be a generating set over A. Let

$$BSO_{2k+1}[j(p)] \xrightarrow{f} BSO[j(p)] \times \prod_{i} K(Z_2, u(i))$$

be the usual map on the first factor, and on the second factor $f^*(\iota_i) = \alpha_i$ where ι_i is the characteristic class of $K_i = K(Z_2, u(i))$. Let F be the fiber of f and let $\delta: E \rightarrow BSO[2k+1]$ be the fiber space induced from f by the composite map

$$BSO[2k+1] \rightarrow BSO[j(p)] \rightarrow BSO[j(p)] \times \prod_{i} K_{i},$$

where the maps are the obvious ones. Following the arguments given above we can prove

LEMMA 5. If $t-s \leq 4k$ and k>4, then:

- (i) $E_2^{s,t}(E) \simeq E_2^{s,t}(BSO[2k+1]) \oplus E_2^{s,t}(F);$ (ii) $E_2^{s,t}(F) \simeq E_2^{s+1,t+1}(V_{2k+1}).$

The theorem follows from this as above.

BIBLIOGRAPHY

- 1. J. F. Adams, Stable homotopy theory, 2nd rev. ed., Lecture Notes in Math., no. 3, Springer-Verlag, Berlin, 1966.
- 2. ——, A periodicity theorem in homological algebra, Proc. Cambridge Philos. Soc. **62** (1966), 365–378.
- 3. M. G. Barratt and M. E. Mahowald, The metastable homotopy of O(n), Bull. Amer. Math. Soc. 70 (1964), 758-760.
- 4. M. E. Mahowald, The metastable homotopy of S^n , Mem. Amer. Math. Soc., No. 72 (1967).
- 5. R. E. Stong, Determination of $H^*(BO(k, \dots, \infty), \mathbb{Z}_2)$ and $H^*(BU(k, \dots, \infty), \mathbb{Z}_2)$, Trans. Amer. Math. Soc. 107 (1963), 526-544.

NORTHWESTERN UNIVERSITY