ON PRINCIPAL SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS ## STEVEN BANK 1. **Introduction.** In this paper we investigate the asymptotic behavior of solutions of certain nth order nonhomogeneous linear ordinary differential equations, $\Omega(y) = \phi$, near a singular point at ∞ . The class of nth order linear differential operators, Ω , treated here consists roughly of those whose coefficients are complex functions, defined and analytic in unbounded sectorial regions, and have asymptotic expansions as $x \rightarrow \infty$ in terms of real (but not necessarily integral) powers of x and/or functions (called trivial) which are of smaller rate of growth (\prec) than all powers of x as $x \to \infty$. (We are using here the concept of asymptotic equivalence (\sim) as $x \to \infty$ and the order relations "\(\sigma\)" introduced in [3, \(\xi\)13]. However, it should be noted (see [3, §128(g)]) that the class of operators treated here includes as a special case those operators where no requirement is imposed except that each coefficient be analytic and have an asymptotic expansion (in the customary sense) of the form $\sum C_i x^{-\lambda_i}$ with λ_i real and $\lambda_i \to +\infty$ as $j \to \infty$. (A summary of the necessary definitions from [3] appears in §2 below.) In [5], Strodt showed that if ϕ is a nontrivial analytic function which also possesses, as $x\to\infty$, an asymptotic expansion in terms of real powers of x and/or trivial functions, then the equation $\Omega(y)=\phi$ has at least one solution y_0 which is \sim to a logarithmic monomial (i.e., a function of the form $Kx^{\alpha_0}(\log x)^{\alpha_1}(\log \log x)^{\alpha_2} \cdot \cdot \cdot (\log_q x)^{\alpha_q}$ for complex $K\neq 0$ and real α_j) and such that if $f \prec y_0$, then $\Omega(f) \prec \phi$. (A solution with these two properties is called a *principal solution* in [3, §69] and is clearly of minimal rate of growth at ∞ .) In this paper we consider the case where ϕ is any function \sim to a logarithmic monomial, and we show in §3 that the equation $\Omega(y) = \phi$ always has a principal solution. As a corollary (§5) we apply a result proved in [1, §12] to obtain a representation theorem for those solutions of $\Omega(y) = \phi$ which are \prec some power of x. Our method of proving §3 consists of first obtaining a sufficiently close approximate solution by successive integrations of a factored equation, and then using the approximate solution to transform the equation into one in which an exact solution can be obtained using [4, §99]. 2. Concepts from [3]. (a) [3, §94]. Let $-\pi \le a \le b \le \pi$. For each non- Received by the editors March 2, 1967. negative real-valued function g on (0, (b-a)/2), let V(g) be the union (over $\delta \in (0, (b-a)/2)$) of all sectors $a+\delta < \arg(x-h(\delta)) < b-\delta$ where $h(\delta) = g(\delta) \exp(i(a+b)/2)$. The set of all V(g) (for all choices of g) is denoted F(a, b) and is a filter base which converges to ∞ . A statement is said to hold except in finitely many directions (briefly, e.f.d.) in F(a, b) if there are finitely many points $r_1 < \cdots < r_q$ in (a, b) such that the statement holds in each of $F(a, r_1)$, $F(r_1, r_2)$, \cdots , $F(r_q, b)$ separately. - (b) [3, §13]. If f is analytic in some V(g), then $f \to 0$ in F(a, b) means that for any $\epsilon > 0$, there is a g_1 such that $|f(x)| < \epsilon$ for all $x \in V(g_1)$. $f \prec 1$ means that in addition to $f \to 0$, all functions $\theta_j^k f \to 0$ where $\theta_j f = x \log x \cdot \cdot \cdot \log_{j-1} x f'$ and where θ_j^k is the kth iteration of the operator θ_j . Then $f_1 \prec f_2$, $f_1 \sim f_2$, $f_1 \approx f_2$ mean respectively $f_1/f_2 \prec 1$, $f_1 f_2 \prec f_2$ and $f_1 \sim cf_2$ for some constant $c \neq 0$. If $f \sim c$, we write $f(\infty) = c$, while if $f \prec 1$, we write $f(\infty) = 0$. If $M = x^{\alpha_0}(\log x)^{\alpha_1} \cdot \cdot \cdot \cdot (\log_r x)^{\alpha_r}$ for some r and M is not constant, then by [3, §28] $f \prec M$ implies $f' \prec M'$. If $f \approx M$, then $\delta_k(f)$ will denote α_k . If $j \geq i$, then $s_{ji}(\alpha)$ will denote the elementary symmetric function of degree i in α , $\alpha 1$, \cdots , $\alpha j + 1$. - (c) [3, §49]. A logarithmic domain of rank zero (briefly an LD_0) over F(a, b) is a complex vector space E of functions (each analytic in some V(g)) which contains the constants and such that any finite linear combination of elements of E, with coefficients which for some $q \ge 0$ are functions of the form $cx^{\alpha_0}(\log x)^{\alpha_1} \cdot \cdot \cdot (\log_q x)^{\alpha_q}$ (for real α_j), is either \sim to a function of this latter form or is trivial. - 3. The main theorem. Consider the equation $\Omega(y) = \phi$, where $\Omega(y)$ is an nth order linear differential polynomial with coefficients in an LD_0 over F(a, b), and where ϕ is a function which in F(a, b) is \sim to a logarithmic monomial. If θ is the operator $\theta y = xy'$, $\Omega(y)$ may be written $\Omega(y) = \sum_{i=0}^n B_i(x)\theta^{iy}$, where the functions B_i belong to an LD_0 . We assume B_n is nontrivial. By dividing the equation $\Omega(y) = \phi$ through by the highest power of x which is \sim to a coefficient B_i , we may assume that for some $m \ge 0$, $B_m \approx 1$ while for each j, $B_j < 1$ or $B_j \approx 1$. Let $F(\alpha) = \sum_{i=0}^n B_i(\infty)\alpha^i$. Let Q be the logarithmic monomial such that $\phi \sim Q$ and let $\delta_i(Q) = \sigma_i$ for each j. Define a logarithmic monomial M as follows. If $F(\sigma_0) \ne 0$, let $M = (F(\sigma_0))^{-1}Q$. If σ_0 is a root of F of multiplicity r, then let $$M = (F^{(r)}(\sigma_0)/r!)^{-1}(s_{rr}(\sigma_1 + r))^{-1}(\log x)^r Q$$ if $\sigma_1 \in \{-1, -2, \cdots, -r\}$, while if $\sigma_1 \in \{-1, -2, \cdots, -r\}$, let $$M = c(\log x)^r(\log_2 x \cdot \cdot \cdot \log_k x)Q$$ where $k = \min\{j: j \ge 2, \sigma_j \ne -1\}$, and $$c = (s_{r,r-1}(\sigma_1 + r))^{-1}(\sigma_k + 1)^{-1}(F^{(r)}(\sigma_0)/r!)^{-1}.$$ Then: (1) The equation $\Omega(y) = \phi$ possesses at least one solution $y_0 \sim M$ e.f.d. in F(a, b). (2) If y_0 is a solution of $\Omega(y) = \phi$ such that $y_0 \sim M$ in some $F(a_1, b_1)$, then for any function f which is $\forall y_0$ in $F(a_1, b_1)$, we have $\Omega(f) \prec \phi$ in $F(a_1, b_1)$. In particular, among all solutions of $\Omega(y) = \phi$ in $F(a_1, b_1)$, y_0 is of minimal rate of growth at ∞ . PROOF OF PART (2). We consider $\Omega(y)-Q$ and apply the algorithm introduced in [3, §66] which produces the set of those logarithmic monomials N (called principal monomials in [3, §67]) such that $\Omega(N) \sim Q$ and $\Omega(f) \prec Q$ whenever $f \prec N$. For $\Omega(y) - Q$ we find by applying the algorithm that M is the unique principal monomial. Hence if $f \prec M$, then $\Omega(f) \prec Q$. Since $y_0 \sim M$ and $\phi \sim Q$, part (2) clearly follows. The proof of part (1) will be based on a sequence of lemmas and will be concluded in §6. - 4. Lemma. Let γ be a complex number and let ψ be a function which in F(a, b) is \sim to a logarithmic monomial R. Let $\delta_i(R) = \lambda_i$. Define a logarithmic monomial N as follows: - (a) If $\lambda_0 \neq \gamma$, let $N = (\lambda_0 \gamma)^{-1} R$. - (b) If $\lambda_0 = \gamma$, let $N = (\lambda_q + 1)^{-1} (\log x \cdot \cdot \cdot \log_q x) R$ where $q = \min \{j: j \ge 1, \lambda_j \ne -1\}$. Then in F(a, b), the equation $xy' - \gamma y = \psi$ has at least one solution $y^* \sim N$. PROOF. Under the change of variable $y = x^{\lambda_0}z$ and multiplication by $x^{-\lambda_0}$, the equation $xy' - \gamma y = \psi$ becomes $$(1) xz' + (\lambda_0 - \gamma)z = \psi_0$$ where $\psi_0 = x^{-\lambda_0} \psi$. Let $N_0 = x^{-\lambda_0}N$. The proof is divided into three cases. Case A. $\operatorname{Re}(\lambda_0 - \gamma) \neq 0$. In this case, under $z = N_0 + N_0 w$ and division by $(\lambda_0 - \gamma) N_0$, equation (1) becomes, (2) $$x(\lambda_0 - \gamma)^{-1}w' + f(x)w = g(x),$$ where $f \sim 1$ (since $xN_0' \prec N_0$ by a simple calculation) and where $g \prec 1$ since $(\lambda_0 - \gamma)N \sim \psi$. Thus (2) is normal in the sense of [3, §83] with divergence monomial $(\lambda_0 - \gamma)x^{-1}$. Since $d = \text{Re}(\lambda_0 - \gamma) \neq 0$, it follows from [3, §111] (when d>0) and [3, §117] (when d<0) that (2) possesses a solution $w_0 \prec 1$ in F(a, b). Then clearly $y^* = x^{\lambda_0}(N_0 + N_0 w_0)$ is $\sim N$ and satisfies the equation $xy' - \gamma y = \psi$. Case B. $\lambda_0 = \gamma$. Thus (1) is of the form $z' = x^{-1}\psi_0$. With N as defined in (b) above, it is proved in [2, p. 272] that for some constant A, $z_0 = A + \int_{x_0}^x x^{-1}\psi_0$ is $\sim N_0$ in F(a, b). Hence if $y^* = x^{\lambda_0}z_0$, then y^* satisfies the conclusion. Case C. $\text{Re}(\lambda_0 - \gamma) = 0$ and $\lambda_0 \neq \gamma$. In this case, (1) may be written $xz'-\sigma iz=\psi_0$ where $\sigma=i(\lambda_0-\gamma)$ is a nonzero real number. Under $z=-(\sigma i)^{-1}\psi_0+w$, this becomes $xw'-\sigma iw=\psi_1$ where $\psi_1=(\sigma i)^{-1}x\psi_0'$. Since $\psi_0 < (\log x)^{\lambda_1+1/2}$, $\psi_1 < (\log x)^{\lambda_1-1/2}$ by §2(b), and hence $\psi_1 < \psi_0$ since $(\log x)^{\lambda_1-\epsilon} < \psi_0$ for all $\epsilon>0$. Under $w=-(\sigma i)^{-1}\psi_1+u$, we obtain $xu'-\sigma iu=\psi_2$ where by §2(b), $\psi_2 < (\log x)^{\lambda_1-3/2}$ (thus $\psi_2 < \psi_0$ since $\psi_0 > (\log x)^{\lambda_1-\epsilon}$ for all $\epsilon>0$). Clearly this process can be repeated so as to make the constant term $< (\log x)^{\alpha}$ for α as small as desired. Hence there is a function $f \sim -(\sigma i)^{-1}\psi_0$ in F(a,b) such that under z=f+v, equation (1) becomes $$xv' - \sigma iv = \phi_1$$ where ϕ_1 is chosen so that, $$\phi_1 \prec (\log x)^{-1-t}$$ where $t = 1 + \max\{0, -2\lambda_1\}$. The technique we now employ to prove the existence of a solution $v_0 \prec f$ of (3) is similar to the technique used by Strodt in the proof of [6, Section 107]. Let $E_1 \in F(a, b)$ be such that on E_1 , we have $|x| \ge 2$ and $$|\phi_1(x)| \leq (\log |x|)^{-1-t/2}.$$ For x and x_1 in E_1 , let $B(x, x_1) = \exp \int_x^{x_1} (-\sigma i/u) du$, where the contour is any rectifiable path from x to x_1 in E_1 . Then clearly, if we put $L(x, \rho) = B(x, \rho x)$ for $1 \le \rho < \infty$, we have (6) $$|L(x, \rho)| \equiv 1 \text{ and } \partial L(x, \rho)/\partial x \equiv 0.$$ Hence, $$|L(x, \rho)| \rho^{-1} |\phi_1(\rho x)| \le (\rho \log 2\rho)^{-1} (\log 2\rho)^{-t/2}$$ for $x \in E_1$ and $1 \le \rho < \infty$; and since the right side is $$(-2/t)d((\log 2\rho)^{-t/2})/d\rho$$, we have by the M-test [7, p. 22] that the integral (7) $$v_0(x) = -\int_1^{\infty} L(x,\rho)\rho^{-1}\phi_1(\rho x)d\rho$$ is uniformly convergent on E_1 and thus represents an analytic function there (e.g., [7, p. 100]) whose derivative may be calculated by differentiating under the integral sign. In view of (5), clearly (8) $$|v_0(x)| \leq (2/t)(\log |x|)^{-t/2}$$ on E_1 and hence $v_0 \rightarrow 0$ in F(a, b). Differentiating (7), we see easily that $v_0' - \sigma i x^{-1} v_0 = x^{-1} \phi_1$ in E_1 , so v_0 is a solution of (3). Successively differentiating (7) and using (6), we see that for all j (8a) $$\theta^{j}v_{0}(x) = -\int_{1}^{\infty} L(x,\rho)\rho^{-1}(\theta^{j}\phi_{1})(x\rho)d\rho$$ (where, for example, $(\theta\phi_1)(x\rho) = x\rho\phi_1'(x\rho)$ etc.) in E_1 . Since $\phi_1 \prec (\log x)^{-1-t/2}$, it follows (see §2(b)) that $\theta^j\phi_1 \prec (\log x)^{-(j+1)-t/2}$ in F(a, b), and so, for each j, there is an $S_j \in F(a, b)$ and a constant c_j such that $$\mid \theta^{j} \phi_{1}(x) \mid \leq c_{j} (\log \mid x \mid)^{-(j+1)-t/2} \text{ on } S_{j}.$$ Hence by (8a), there is a C_i such that (9) $$|\theta^{j}v_{0}(x)| \leq C'_{j}(\log |x|)^{-j-t/2} \text{ in } S_{j}.$$ Thus $\theta^{j}v_0 \rightarrow 0$ in F(a, b) for each j. Now let p > 1. Then, by the definition of the operator θ_p , $\theta_p v_0 = G\theta v_0$ where $G = \log x \cdot \cdot \cdot \log_{p-1} x$. It is routine to verify by induction on j that for $j = 1, 2, \cdots$ (10) $$\theta_p^j v_0 = \sum_{\alpha=1}^j G_{\alpha j} \theta^{\alpha} v_0,$$ where $$(11) G_{\alpha j} = \sum_{i} m(i_1, \cdots, i_j, \alpha) G^{i_1}(\theta G)^{i_2} \cdots (\theta^{j-1} G)^{i_j}$$ in which the *m*'s are constants, $i_1 + \cdots + i_j = j$ and $i_2 + 2i_3 + \cdots + (j-1)i_j = j - \alpha$ for each term in (11). Now for all $\epsilon > 0$, $G < (\log x)^{1+\epsilon}$ so (see §2(b)) $\theta^j G < (\log x)^{1-j+\epsilon}$ for each *j*. Hence, by (11), for each α and *j* we have $G_{\alpha j} < (\log x)^{\alpha+\epsilon j}$ for all $\epsilon > 0$. Now *t* is a fixed positive number and so for each given α and *j*, we have, by taking $\epsilon = t/5j$, that $G_{\alpha j} < (\log x)^{\alpha+t/4}$. Hence there exist $S_{\alpha j} \in F(a, b)$ and constants $d(\alpha, j)$ such that on $S_{\alpha j}$, $$|G_{\alpha i}(x)| \leq d(\alpha, j)(\log |x|)^{\alpha+t/4}$$. Thus by (9) and (10), for each p and j, $$|\theta_{p}^{i}v_{0}(x)| \leq m_{pj}(\log |x|)^{-t/4}$$ in some element of F(a, b) for some constant m_{pj} . Thus $\theta_p^j v_0 \rightarrow 0$ for all p and j since t > 0 and so $$(12) v_0 \prec 1 \text{ in } F(a,b).$$ Since v_0 solves (3), we have (13) $$v_0 = (\sigma i)^{-1} (x v_0' - \phi_1).$$ Since $v_0 \prec 1$, $xv_0' \prec (\log x)^{-1}$. Thus since $\phi_1 \prec (\log x)^{-1-t/2}$, we have by (13) that $v_0 \prec (\log x)^{-1}$. Hence $xv_0' \prec (\log x)^{-2}$, and so if -1-t/2 < -2, we have $v_0 \prec (\log x)^{-2}$. Continuing this way, if m is the greatest integer <1+t/2, then $v_0 \prec (\log x)^{-m}$, and so since $m+1 \ge 1+t/2$, we have by (13) that $v_0 \prec (\log x)^{-1-t/2}$ in F(a, b). Thus by (4), $v_0 \prec (\log x)^{\lambda_1-1}$ and so $v_0 \prec f$ in F(a, b). Hence if $z_0 = f + v_0$, then $z_0 \sim f$ and z_0 solves (1). Hence $y^* = x^{\lambda_0} z_0$ is a solution of $xy' - \gamma y = \psi$ and $y^* \sim N$ in F(a, b) concluding the proof. 5. Lemma. Assume the hypothesis and notation of §3. Let $\Phi(y) = \sum_{i=0}^{n} B_{i}(\infty)\theta^{i}y$. Then there exists a function y^{*} such that $\Phi(y^{*}) = \phi$ and $y^{*} \sim M$ in F(a, b) (where M is as in §3). PROOF. Let $F(\alpha) = \sum B_i(\infty)\alpha^i$ be of degree p. If p=0, take $y^* = (B_0(\infty))^{-1}\phi$. Hence we may assume p>0. It is easy to verify that if $F(\alpha) = b_p(\alpha - \alpha_1) \cdot \cdot \cdot \cdot (\alpha - \alpha_p)$ (where $b_p = B_p(\infty)$), then $b_p^{-1}\Phi = (\theta - \alpha_1) \circ \cdot \cdot \cdot \circ (\theta - \alpha_p)$ where the order of the factors is immaterial. Let $\phi^* = b_p^{-1}\phi$ and let $Q^* = b_p^{-1}Q$. We solve $\Phi(y) = \phi$ by successive integrations on $b_p^{-1}\Phi = \phi^*$ using §4, and we adopt the following notation. We let y_1 be any solution of $xy' - \alpha_1 y = \phi^*$ given by §4. Since y_1 is \sim to a logarithmic monomial, we let y_2 be any solution of $xy' - \alpha_2 y = y_1$ given by §4. In general, y_{j+1} is any solution of $xy' - \alpha_{j+1}y = y_j$ ($1 \le j \le p-1$) given by §4. Then clearly $y^* = y_p$ solves $\Phi(y) = \phi$. We will show $y^* \sim M$. Case I. $F(\sigma_0) \neq 0$. By $\S4(a)$, $y_1 \sim (\sigma_0 - \alpha_1)^{-1}Q^*$. Similarly $y_2 \sim (\sigma_0 - \alpha_2)^{-1}(\sigma_0 - \alpha_1)^{-1}Q^*$. Continuing by $\S4(a)$, $y_p \sim (F(\sigma_0))^{-1}Q$ so $y_p \sim M$. Case II. σ_0 is a root of F of multiplicity r and $\sigma_1 \notin \{-1, \dots, -r\}$. Let $\alpha_1 = \dots = \alpha_r = \sigma_0$. By $\{4(b), y_1 \sim (\sigma_1 + 1)^{-1}(\log x)Q^*$. Similarly by $\{4(b), \dots, y_n \in A(b)\}$ $$y_j \sim (\sigma_1 + j)^{-1} \cdot \cdot \cdot (\sigma_1 + 1)^{-1} (\log x)^j Q^*$$ for $2 \le j \le r$. Then by §4(a), $$y_{r+1} \sim (\sigma_0 - \alpha_{r+1})^{-1} (\sigma_1 + r)^{-1} \cdot \cdot \cdot (\sigma_1 + 1)^{-1} (\log x)^r Q^*$$ and by continuing to use §4(a), clearly $$y_p \sim K(\log x)^r Q$$ where $K = (F^{(r)}(\sigma_0)/r!)^{-1}(s_{rr}(\sigma_1 + r))^{-1}$ so $y_p \sim M$. Case III. σ_0 is a root of F of multiplicity r and $\sigma_1 = -1$. Thus, $\min\{j: j \ge 1, \sigma_j \ne -1\} = k$ (as in §3). Thus, by §4(b), (assuming $\alpha_1 = \cdots = \alpha_r = \sigma_0$), $$y_1 \sim (\sigma_k + 1)^{-1} (\log x \cdot \cdot \cdot \log_k x) Q^*.$$ Since $\delta_1(y_1) = 0$, we find by continuing up to r using §4(b) that $y_r \sim ((r-1)!)^{-1} (\log x)^{r-1} y_1$. We now continue using §4(a) and find that $y_p \sim b_p(F^{(r)}(\sigma_0)/r!)^{-1} y_r$. Since $(r-1)! = s_{r,r-1}(\sigma_1+r)$, clearly $y_p \sim M$. Case IV. σ_0 is a root of F of multiplicity r and $\sigma_1 \in \{-2, \dots, -r\}$. Let $s = -\sigma_1$. Since $\sigma_1 \neq -1$, by §4(b), (assuming $\alpha_1 = \dots = \alpha_r = \sigma_0$), $y_1 \sim (\sigma_1 + 1)^{-1} (\log x) Q^*$. Continuing up to s - 1, we find $$y_{s-1} \sim [(\sigma_1 + 1) \cdot \cdot \cdot (\sigma_1 + s - 1)]^{-1} (\log x)^{s-1} Q^*.$$ Since $\delta_1(y_{s-1}) = -1$, we have by §4(b), $$y_s \sim (\sigma_k + 1)^{-1} \log x \cdot \cdot \cdot \log_k x y_{s-1}$$. Since $\delta_1(y_s) = 0$, we have, using §4(b), that $y_r \sim ((r-s)!)^{-1} (\log x)^{r-s} y_s$. Now, using §4(a), we find $y_p \sim b_p(F^{(r)}(\sigma_0)/r!)^{-1} y_r$. Since $(r-s)! = (\sigma_1 + r) \cdot \cdot \cdot \cdot (\sigma_1 + s + 1)$, it follows that $y_p \sim M$. 6. Conclusion of main theorem (§3). For each i, $B_i = b_i + w_i$ where $b_i = B_i(\infty)$ and $\delta_0(w_i) < 0$. Letting $\Phi(y) = \sum_{i=0}^n b_i \theta^i y$ and $\Gamma(y) = \sum_{i=0}^n w_i \theta^i y$, we have by §5 that there exists a function $y^* \sim M$ in F(a, b) such that $\Phi(y^*) = \phi$. Under $y = y^* + z$, $\Omega(y) = \phi$ becomes $\Omega(z) = -\Gamma(y^*)$. Now if $\delta_0(y^*) = \lambda$, then it is easily verified that $\delta_0(\theta^j y^*) \leq \lambda$ for each j. Letting $\epsilon > 0$ be such that $\delta_0(w_i) < -\epsilon$ for each i, we have (1) $$\delta_0(\Gamma(y^*)) < \lambda - \epsilon.$$ We now utilize a technique employed by Strodt in [5] which we outline here for the reader's convenience. Let $H = \{\alpha \colon F(\alpha) = 0\}$. Then if q is a real number not in H and we let $k_q = (F(q))^{-1}$, it is easily seen that the principal monomial of $\Omega(y) - x^q$ is $k_q x^q$. Hence if we let $\Lambda_q(\omega) = x^{-q}\Omega(k_q x^q \omega)$, then by the properties of a principal monomial we have $\Lambda_q(1) \sim 1$ and $\Lambda_q(E) < 1$ if E < 1. (Thus Λ_q is unimajoral in the terminology of [4, Section 13]). Further, it is easily seen that Λ_q has coefficients in an $LD_0(F(a, b))$ and that $\partial \Lambda_q/\partial \omega^{(n)}$ is a nontrivial function. Thus by [4, Section 27], Λ_q possesses at least one principal fac- torization sequence, that is, a sequence (V_1, \dots, V_n) of logarithmic monomials such that Λ_q may be written $$\Lambda_q = \dot{V}_n \cdot \cdot \cdot \dot{V}_1 + \sum_{j=0}^n E_j \dot{V}_j \cdot \cdot \cdot \dot{V}_1$$ where \dot{V}_j is the operator $\dot{V}_j(y) = y - y'/V_j$ and where each $E_j < 1$. Now by definition of Λ_q , it is easily verified that $$\Lambda_q(\omega) = k_q \sum_{j=0}^n B_j (q + \theta)^j \omega,$$ and so it follows from [4, Section 44] that all principal factorization sequences for $\Lambda_{\sigma}(\omega)$ can be obtained as follows. If we let $$C_1^* \Lambda_q(y) = k_q \sum_{j=0}^n B_j(q + xy)^j$$ and if N_1, \dots, N_n are the logarithmic monomials such that the zeros y_1, \dots, y_n of $C_1^*\Lambda_q(y)$ satisfy $y_j/N_j \rightarrow 1$ for each j, then (V_1, \dots, V_n) is a principal factorization sequence for Λ_q if and only if (V_1, \dots, V_n) is a permutation of (N_1, \dots, N_n) and for each j, V_j is either \prec or \approx to V_{j+1} . Since $\{B_0, \dots, B_n\}$ is contained in an $LD_0(F(a, b))$, it easily follows that if (V_1, \dots, V_n) is a principal factorization sequence for Λ_q , then for each j, V_j has the form $$(2) V_j = c_i x^{-1+t_i}$$ for some constant c_j and some $t_j \ge 0$. V_j is called nonexceptional if either $t_j > 0$ or c_j is not purely imaginary, and (V_1, \dots, V_n) is called nonexceptional if each V_j is nonexceptional. From the definition of $C_1^*\Lambda_q(y)$, it follows that for q and s not in H, we have $$C_1^* \Lambda_q(y) = k_q(k_s)^{-1} C_1^* \Lambda_s((q-s)x^{-1}+y).$$ We now fix s and we fix a principal factorization sequence for Λ_s (which may be exceptional). By the above relation, y^{\sharp} is a zero of $C_1^*\Lambda_q(y)$ if and only if $(q-s)x^{-1}+y^{\sharp}$ is a zero of $C_1^*\Lambda_s(y)$, and so it easily follows from the previous discussion that except for finitely many real q, $\Lambda_q(\omega)$ possesses a nonexceptional principal factorization sequence. Thus we have outlined the proof given in [5] that there is a finite set G of real numbers such that for any real number $q \notin G$, $\Lambda_q(\omega)$ is unimajoral and possesses a nonexceptional principal factorization sequence. In our case here, we choose a real number $q \notin G$ such that $\lambda - \epsilon < q < \lambda$, and let (V_1, \dots, V_n) be a nonexceptional principal fac- torization sequence for this Λ_q . If V_j has the form in (2), then its indicial function (as defined in [4, Section 61]) is the function defined on (a, b) given by $f_j(\alpha) = \cos(t_j\alpha + \arg c_j)$. (Thus if $t_j = 0$, f_j is the constant function $\cos(\arg c_j)$.) Since each V_j is nonexceptional, each f_j has only finitely many zeros in (a, b). Hence the union of the sets of roots of the f_j is a finite set $\gamma_1 < \cdots < \gamma_d$ in (a, b). Thus if $I = (a_1, b_1)$ is any of the intervals (a, γ_1) , (γ_1, γ_2) , \cdots , (γ_d, b) , then no indicial function vanishes anywhere in I, so by definition [4, §98], (V_1, \cdots, V_n) is unblocked in (a_1, a_2, b_1) for any a_2 . Furthermore, by (1) and choice of q, $x^{-q}\Gamma(y^*) < 1$, and so by definition [4, §88], (V_1, \cdots, V_n) is a strong factorization sequence for $\Lambda_q(\omega) + x^{-q}\Gamma(y^*)$ in F(I). Hence by [4, §99, Theorem II], the equation $\Lambda_q(\omega) + x^{-q}\Gamma(y^*) = 0$ possesses a solution $\omega_0 < 1$ in F(I). Letting $z_0 = k_q x^q \omega_0$, we have $\Omega(z_0) = -\Gamma(y^*)$; and since $q < \lambda$, we have $z_0 < y^*$. Letting $y_0 = y^* + z_0$, we then have $\Omega(y_0) = \phi$ and $y_0 \sim M$ in F(I), which concludes the proof. 7. Corollary. Under the hypothesis and notation of §3, let I be a subinterval of (a, b) such that in F(I) there is a solution $y_0 \sim M$ of $\Omega(y) = \phi$ (as just proved) and such that a complete logarithmic set of solutions $\{g_1, \dots, g_p\}$ of $\Omega(y) = 0$ exists in F(I). (It was shown in $[1, \S11]$ that if $p = \max\{j: B_j(\infty) \neq 0\}$, then e.f.d. in F(a, b) there exist solutions g_1, \dots, g_p of $\Omega(y) = 0$ such that $g_j \sim x^{\alpha_j} (\log x)^{\beta_j}$ for some complex α_j and integer β_j and such that $(\alpha_k, \beta_k) \neq (\alpha_j, \beta_j)$ if $k \neq j$.) Then if y^{\sharp} is any solution of $\Omega(y) = \phi$ which in F(I) is $\langle x^{\delta}$ for some constant δ , then e.f.d. in F(I) there exist constants c_1, \dots, c_p and a trivial function T(x) such that $y^{\sharp} = y_0 + \sum_{j=1}^p c_i g_i + T$. PROOF. $y^{\sharp} - y_0$ is a solution of $\Omega(y) = 0$ and is $\prec x^{\alpha}$ for some α so the result follows immediately from [1, §12]. ## **BIBLIOGRAPHY** - 1. S. Bank, An asymptotic analog of the Fuchs regularity theorem, J. Math. Anal. Appl. 16 (1966), 138-151. - 2. E. W. Chamberlain, Families of principal solutions of ordinary differential equations, Trans. Amer. Math. Soc. 107 (1963), 261-272. - 3. W. Strodt, Contributions to the asymptotic theory of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc. No. 13 (1954), 81 pp. - 4. ——, Principal solutions of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc. No. 26 (1957), 107 pp. - 5. ——, Report on investigation in differential equations, Contract no. NSF G12984 between the NSF and Columbia University, November 1961. - 6. ——, On the Briot and Bouquet theory of singular points of ordinary differential equations, Tech. Summary Rep. #508, Math. Res. Ctr., U. S. Army, Univ. of Wis., 1964, 103 pp. - 7. E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, London, 1939.