ON PRINCIPAL SOLUTIONS OF LINEAR
DIFFERENTIAL EQUATIONS

STEVEN BANK

1. Introduction. In this paper we investigate the asymptotic be-
havior of solutions of certain nth order nonhomogeneous linear ordi-
nary differential equations, Q(y) =¢, near a singular point at «. The
class of nth order linear differential operators, 2, treated here con-
sists roughly of those whose coefficients are complex functions, de-
fined and analytic in unbounded sectorial regions, and have asymp-
totic expansions as x—« in terms of real (but not necessarily inte-
gral) powers of x and/or functions (called trivial) which are of
smaller rate of growth (<) than all powers of x as x—». (We are
using here the concept of asymptotic equivalence (~) as x—« and
the order relations “~<?” introduced in [3, §13]. However, it should be
noted (see [3, §128(g)]) that the class of operators treated here in-
cludes as a special case those operators where no requirement is
imposed except that each coefficient be analytic and have an asymp-
totic expansion (in the customary sense) of the form »_Cx—; with
\; real and \;—>+ » as j— . (A summary of the necessary defini-
tions from [3] appears in §2 below.)

In [5], Strodt showed that if ¢ is a nontrivial analytic function
which also possesses, as x— «, an asymptotic expansion in terms of
real powers of x and/or trivial functions, then the equation Q(y) =¢
has at least one solution y, which is ~ to a logarithmic monomial
(i.e., a function of the form Kx=(log x)=1(log log x)=2 - - - (log, x)%
for complex K0 and real ;) and such that if f<y,, then Q(f)<¢.
(A solution with these two properties is called a principal solution in
[3, §69] and is clearly of minimal rate of growth at .)

In this paper we consider the case where ¢ is any function ~ to a
logarithmic monomial, and we show in §3 that the equation Q(y) =¢
always has a principal solution. As a corollary (§5) we apply a result
proved in [1, §12] to obtain a representation theorem for those solu-
tions of 2(y) =¢ which are < some power of x. Our method of proving
§3 consists of first obtaining a sufficiently close approximate solution
by successive integrations of a factored equation, and then using the
approximate solution to transform the equation into one in which an
exact solution can be obtained using [4, §99].

2. Conceptsfrom [3]. (a) [3, §94]. Let —7<a <b=. For each non-
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negative real-valued function g on (0, (b —a)/2), let V(g) be the union
(over 6&(0, (b—a)/2)) of all sectors a+é <arg(x—h(8)) <b—4
where k(8) =g(8) exp(i(a+5)/2). The set of all V(g) (for all choices
of g) is denoted F(e, b) and is a filter base which converges to .
A statement is said to hold except in finitely many directions (briefly,
e.f.d.) in F(a, b) if there are finitely many points n< - - - <7, in
(a, b) such that the statement holds in each of F(a, r), F(r, ),
- -+, F(rq, b) separately.

(b) [3, §13]. If fis analytic in some V(g), then f—0 in F(a, b) means
that for any €>0, there is a g such that |f(x)| <e for all xE V(g).
f<1 means that in addition to f—0, all functions 6;f—0 where 6;f
=x log % - - - log;_1xf’ and where 6 is the kth iteration of the op-
erator 8;. Then fi<fs, fi~f: fi=f: mean respectively fi/fo<1, fi
—f2=<f2 and fi~cf, for some constant c#0. If f~c¢, we write f(») =c,
while if f<1, we write f(»)=0. If M=x%(log x)» - - - (log, x)* for
some 7 and M is not constant, then by [3, §28] f<M implies f'<M".
If f=~M, then §.(f) will denote ay. If j=1, then s;;(c) will denote
the elementary symmetric function of degree 7 in «, a—1, - - -,
a—j+1.

(c) [3, §49]. A logarithmic domain of rank zero (briefly an LD,)
over F(a, b) is a complex vector space E of functions (each analytic
in some V(g)) which contains the constants and such that any finite
linear combination of elements of E, with coefficients which for some
¢=0 are functions of the form cx®(log x)x - - - (log, x)« (for real
a;), is either ~ to a function of this latter form or is trivial.

3. The main theorem. Consider the equation Qy)=¢, where Qy) is
an nth order linear differential polynomial with coefficients in an LD,
over F(a, b), and where ¢ is a function which in F(a, b) is ~ to a loga-
rithmic monomial. If 0 is the operator 0y =xy', Q(y) may be written
Qy) = D_* o Bi(x)0'y, where the functions B; belong to an LD, We
assume B, is nontrivial. By dividing the equation Q(y) =¢ through by
the highest power of x which is ~ to a coefficient B;, we may assume that
for some m=0, Bn=1 while for each j, B;j<1 or B;=~1. Let F(a)
= > " Bi(o)at. Let Q be the logarithmic monomial such that ¢~Q
and let 8;(Q) =o;j for each j. Define a logarithmic monomial M as follows.
If F(ao)#0, let M= (F(00))71Q. If oo is a root of F of multiplicity r,
then let

M = (F®(a0) /7)) (sse(e1 + 7)) *(log x)7Q
if o€ {—1,-2,--, -7},
while if 016{—1, —2, -, —r}, let
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M = c(log x)"(logz x - - - logk x)Q
where k=min{j:j§2, O'j;ﬁ—l}, and
¢ = (srr—1(01 + 7)) ox + 1)U (FD(00)/r)

Then: (1) The equation Q(y)=¢ possesses at least ome solution vy,
~Mef.d.in F(a,b). (2) If yo is a solution of Q(y) =¢ such that yo~M
in some F(ai, bi), then for any function f which is <y, in F(a1, b1),
we have Q(f)<¢ in F(ay, by). In particular, among all solutions of
Q(y) =¢ in F(as, b1), yo is of minimal rate of growth at «.

PROOF OF PART (2). We consider Q(y) —Q and apply the algorithm
introduced in [3, §66] which produces the set of those logarithmic
monomials N (called principal monomials in [3, §67]) such that
Q(N)~Q and Q(f)<Q whenever f<N. For Q(y) —Q we find by ap-
plying the algorithm that M is the unique principal monomial. Hence
if f<M, then Q(f)<Q. Since yo~M and ¢~Q, part (2) clearly fol-
lows.

The proof of part (1) will be based on a sequence of lemmas and
will be concluded in §6.

4. Lemma. Let vy be a complex number and let ¥ be a function which
in F(a, b) is ~ to a logarithmic monomial R. Let 8,(R) =\,. Define a
logarithmic monomial N as follows:

(@) If No##v, let N=No—7)"'R.

(b) If No =1, let N = (\+1)"*(logx - - - logex)R where q =
min {j:j=1, \;=—1}.

Then in F(a, b), the equation xy' —vyy=y has at least one solution
y*~N.

Proor. Under the change of variable y =x%z and multiplication
by x~, the equation xy’ —vyy =y becomes

¢)) 2z + (Mo — 1)z = Yo
where ¢ =x"0f.
Let No=x""N. The proof is divided into three cases.

Case A. Re(\o—7) 0.
In this case, under z=N;+ Nyw and division by (\¢—7v)N,, equa-

tion (1) becomes,
(2) (o — 7)1 + f(x)w = g(x),

where f~1 (since xNJ <N, by a simple calculation) and where g<1
since \o—7y)N~. Thus (2) is normal in the sense of [3, §83] with
divergence monomial (A\¢—%)x~%. Since d =Re(\¢—7v) #0, it follows
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from [3, §111] (when d>0) and [3, §117] (when d <0) that (2) pos-
sesses a solution w,—<1 in F(a, b). Then clearly y* =x(No+ Now,) is
~N and satisfies the equation xy’ —vyy =y.

Case B. \¢=".

Thus (1) is of the form 2’ =x—4, With N as defined in (b) above,
it is proved in [2, p. 272] that for some constant 4, zo=A4 + [Zx %,
is ~Ng in F(a, b). Hence if y* =x 0z, then y* satisfies the conclusion.

Case C. Re(\o—v) =0 and \,#7.

In this case, (1) may be written x2' —oiz=y, where e =1(\o—7)
is a nonzero real number. Under z= —(07)" 4w, this becomes
xw —aiw=yy where Y1=(0i)"xJ. Since Yo<(log x)M+V2, Y,
< (log x)*—42 by §2(b), and hence Y1 <y, since (log x)M—<y, for all
€>0. Under w= —(¢7)"Y1+u, we obtain xu’—oiu=y, where by
§2(b), Yo<(log x)*1~%2 (thus Y.~<y, since >~ (log x)M1~ for all €>0).
Clearly this process can be repeated so as to make the constant term
~<(log x)* for @ as small as desired. Hence there is a function
f~—{(09)" %, in F(a, b) such that under z=f-+v, equation (1) becomes

3) 2’ — otv = ¢
where ¢; is chosen so that,
4) ¢1 < (log x)1~*

where {=1+max {O, —2\1 } .

The technique we now employ to prove the existence of a solution
99=<f of (3) is similar to the technique used by Strodt in the proof of
[6, Section 107].

Let E & F(a, b) be such that on E;, we have ]x[ =2 and

(5) | $1(x)| < (log | x| )=t

For x and x; in Ey, let B(x, x1) =exp [%(—oi/u)du, where the contour
is any rectifiable path from x to x; in E;. Then clearly, if we put
L(x, p) =B(x, px) for 1 Zp< o, we have

(6) | L(x,p)| =1 and 0L(x,p)/0x = 0.
Hence,
| L(x, 0) [ 07| 61(0%)| = (o log 20)~(log 20)~*/
for x€E; and 1 £p < «; and since the right side is
(—2/0d((log 2p)*/) /dp,

we have by the M-test [7, p. 22] that the integral
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) w(@) = — [ Lz, o ba(ox)do

1

is uniformly convergent on E; and thus represents an analytic func-
tion there (e.g., [7, p. 100]) whose derivative may be calculated by
differentiating under the integral sign. In view of (5), clearly

®) | vo(x)| < 2/8)(log | x| )2

on FE; and hence v¢—0 in F(a, b). Differentiating (7), we see easily
that v) —gix~Ywo=x"1¢ in Ei, so v, is a solution of (3). Successively
differentiating (7) and using (6), we see that for all 5

(8a) Oni) = = [ L 0o 0) )

(where, for example, (@¢1)(xp) =xpdpi (xp) etc.) in E;. Since ¢
< (log x)~1-42 it follows (see §2(b)) that 6i¢p;<(log x)~G+b—t2 in
F(a, b), and so, for each j, there is an S;E F(a, b) and a constant c;
such that

| 03¢1(2) | < ¢j(log | x| )~G+D-t2 on ;.
Hence by (8a), there is a C/ such that
9) | 67v(x) | < Cf(log | x| )=+ in S,

Thus 67%y—0 in F(a, b) for each j. Now let p>1. Then, by the defini-
tion of the operator 0,, 8,vo =G0y where G=log x - - - logy—1 x. It is

routine to verify by induction on j that for j=1, 2, - - -
(10) pvo Z Gas0%0,,
a=1
where
1 Gaj = 2o m(iy, - =+, 35, )GH(6G)% - - - (671G)*
in which the m's are constants, o1+ - - + +7;,=7 and 754273+ - - -

+(j—1)i;=j—a for each term in (11). Now for all e>0, G<(log x)**
so (see §2(b)) 8:G< (log x)1~7t¢ for each j. Hence, by (11), for each «
and j we have G.;<(log x)=t< for all ¢>0. Now ¢ is a fixed positive
number and so for each given a and j, we have, by taking e=¢/5j,
that Ga.;~<(log x)=t!4. Hence there exist S.;&E F(a, b) and constants
d(a, j) such that on S,,,

| Gai(®) | < d(ay j)(log | x| )+
Thus by (9) and (10), for each p and j,
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I opfvo(x) | é mpj(log | xl )_‘/4

in some element of F(a, b) for some constant m,;. Thus 6Jv,—0 for
all p and j since £>0 and so

(12) 29 <1 in F(a,b).
Since v, solves (3), we have
(13) v = (a8) 7 (xvd — ¢1).

Since v9<1, xvd <(log x)~!. Thus since ¢:1<(log x)~1~42, we have by
(13) that v,<(log x)~!. Hence xv{ <(log x)-2, and so if —1—¢/2
< —2, we have 9,<(log x)~2 Continuing this way, if m is the greatest
integer <14£/2, then v,<(log x)~™, and so since m+1=1+41¢/2, we
have by (13) that »y<(log x)~'=42 in F(a, b). Thus by (4), v,
~<(log x)»~! and so vo=<f in F(a, b). Hence if zo=f-+wv,, then zo~f
and 2o solves (1). Hence y*=x"sz, is a solution of xy' —yy=y and
y*~N in F(a, b) concluding the proof.

5. Lemma. Assume the hypothesis and notation of §3. Let P(y)
= D" o Bi()8'y. Then there exists a function y* such that ®(y*) =¢
and y¥*~M in F(a, b) (where M is as in §3).

ProoF. Let F(a)= Y Bi(«)a‘ be of degree p. If p=0, take y*
= (Bo(>))"'¢. Hence we may assume p>0. It is easy to verify that
if F(a)=byla—a) - - - (@—a,) (where b,=B,(»)), then b,'®
=(@—oa1) o -0 (@—a, where the order of the factors is imma-
terial. Let ¢*=0,"¢ and let Q*=0,'Q. We solve ®(y) =¢ by succes-
sive integrations on b,'®=¢* using §4, and we adopt the following
notation. We let y; be any solution of xy'—a;y=¢* given by §4.
Since y; is ~ to a logarithmic monomial, we let y, be any solution of
xy' —oy=y: given by §4. In general, y,;, is any solution of xy’
—ajuy=y; (1=j=<p—1) given by §4. Then clearly y*=y, solves
®(y) =¢. We will show y*~ M.

Case 1. F(oo)#0. By §4(a), yi~(do—au)"1Q* Similarly 1y,
~(co—as) Y oo—a1)!Q* Continuing by §4(a), y,~(F(c0))"!Q so
Yo~ M.

Case 11. ¢ is a root of F of multiplicity r and o1 { -1, -, —r}.
Let ay= - - - =a,=0,. By §4(b), yi~(c1+1)"(log x)Q*. Similarly
by §4(b),

yi~(er+ )7 (o + D7 W(log x)Q* for2 <j <.
Then by §4(a),
Yrp1~ (00 — arp)) Hor +7)71 - - - (oy + 1)"(log x) Q*
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and by continuing to use §4(a), clearly
vp ~ K(log x)7Q where K = (F(aq)/r) " (spr(os + 7)1

so yp,~M.

Case I11. oy is a root of F of multiplicity » and o= —1. Thus,
min{j: j=1, 0,-¢—l}=k (as in §3). Thus, by §4(b), (assuming
o= - =a,=ay),

y1~ (or + 1)"(og x - - - log: x)Q*.

Since 6:1(y1)=0, we find by continuing up to r using §4(b) that
yo~((r—1)H)"1(log x)~1y;. We now continue using §4(a) and find
thaty,~b,(F®(ao)/r!)~y,.Since (r —1) ! =5, ,_1(01+7), clearly y ,~ M.
Case 1V. g is a root of F of multiplicity » and ale{ —2, -, —r}.
Let s= —o1. Since 615% —1, by §4(b), (assuming au= - - - =a,=0,),
y1~(o1+1)"1(log x)Q*. Continuing up to s—1, we find

Yoor~ [(er + 1) - - - (61 + s — 1)]7(log x)1Q*.
Since 61(¥s-1) = —1, we have by §4(b),
ys~ (or + 1)~ Llog x - - - logk %ys—1.

Since 8:(y,) =0, we have, using §4(b), that y,~((r—s)!)~1(log x)"*y..
Now, using §4(a), we find y,~b,(F?(0y)/r!)"1y,. Since (r—s)!
=(g1+7) - - - (e1-+s+1), it follows that y,~M.

6. Conclusion of main theorem (§3). For each 2, B;=b,+w; where
bi=Bi(») and 8o(w;) <0. Letting ®(v)= D 1,08 and I'(y)
= > ", wh'y, we have by §5 that there exists a function y*~M in
F(a, b) such that ®(y*)=¢. Under y=y*4z Q(y)=¢ becomes
Q(z) = —T'(y*). Now if 8y(y*) =N\, then it is easily verified that
8¢(07y*) <\ for each j. Letting >0 be such that 8¢(w:) < —e for each
i, we have

(1) So(T(¥%) <\ — e

We now utilize a technique employed by Strodt in [5] which we
outline here for the reader’s convenience. Let H={a: F(a)=0}.
Then if g is a real number not in H and we let k,= (F(g))7%, it is easily
seen that the principal monomial of Q(y) —x? is k9. Hence if we let
A (w) =x—Q(kx%), then by the properties of a principal monomial
we have A,(1)~1 and A,(E)<1 if E<1. (Thus A, is unimajoral in the
terminology of [4, Section 13]). Further, it is easily seen that A, has
coefficients in an LDo(F(a, b)) and that dA,/dw™ is a nontrivial func-
tion. Thus by [4, Section 27], A, possesses at least one principal fac-
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torization sequence, that is, a sequence (V3, - - -, V) of logarithmic
monomials such that A, may be written

Aq:Vn"'Vl‘*‘ZEjVj"'Vl
=0

where V; is the operator V;(y)=y—7v'/V; and where each E;<1.
Now by definition of A, it is easily verified that

Ao@) = ko 3 Bi(g + 0)o,

=0

and so it follows from [4, Section 44] that all principal factorization
sequences for A,(w) can be obtained as follows. If we let

Cid(y) = kg 2 Bi(g + y)7

j=0

and if Ny, -+ -, N, are the logarithmic monomials such that the
zeros yi, - -+, ¥, of CfA.(y) satisfy y,/N;—1 for each j, then
(Vh, + -+, V) is a principal factorization sequence for A, if and only
if (Vy, - -+, V,) is a permutation of (NVy, - - -, N,) and for each j,
V;is either < or = to V1. Since {Bo, ceey, B,,} is contained in an
LDy(F(a, b)), it easily follows that if (V3, - - -, V,) is a principal
factorization sequence for A,, then for each j, V; has the form

(2) Vj = ij_1+ti

for some constant ¢; and some £;=0. V; is called nonexceptional if
either ¢;>0 or ¢; is not purely imaginary, and (V3, - - -, V) is called
nonexceptional if each V; is nonexceptional. From the definition of
CTA4(y), it follows that for ¢ and s not in H, we have

Cihg(3) = ko(k)1CiAu((g — 55~ + 3).

We now fix s and we fix a principal factorization sequence for A,
(which may be exceptional). By the above relation, yf is a zero of
CfA,(v) if and only if (g—s)x—1+y* is a zero of CfA,(y), and so it
easily follows from the previous discussion that except for finitely
many real g, A,(w) possesses a nonexceptional principal factorization
sequence. Thus we have outlined the proof given in [5] that thereis
a finite set G of real numbers such that for any real number ¢& G,
A4(w) is unimajoral and possesses a nonexceptional principal fac-
torization sequence.

In our case here, we choose a real number ¢éEG such that A—e
<g<A, and let (Vy, - -+, V,) be a nonexceptional principal fac-
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torization sequence for this A,. If V; has the form in (2), then its
indicial function (as defined in [4, Section 61]) is the function defined
on (a, b) given by f;(a) =cos(t;a+arg ¢;). (Thus if ¢;=0, f; is the con-
stant function cos(arg c;).) Since each V; is nonexceptional, each f;
has only finitely many zeros in (@, b). Hence the union of the sets of
roots of the f; is a finite set 1 < + - - <+vygin (a, b). Thus if I =(ai, b1)
is any of the intervals (a, v1), (v1, ¥2), - - -, (va, ), then no indicial
function vanishes anywhere in I, so by definition [4, §98], (V4, - - -,
V.) is unblocked in (ai, a., b)) for any a,. Furthermore, by (1) and
choice of g, x~T'(y*)<1, and so by definition [4, §88], (V1, - - -, V)
is a strong factorization sequence for A (w) +x~T'(y*) in F(I). Hence
by [4, §99, Theorem I1], the equation A,(w)+x—<T'(y*) =0 possesses
a solution wo—<1 in F(I). Letting 2, =kx%,, we have Q(z) = —T'(y*);
and since ¢ <\, we have z,<y*. Letting yo=y*-+2,, we then have
Q(yo) =¢ and yo~M in F(I), which concludes the proof.

7. Corollary. Under the hypothesis and notation of §3, let I be a
subinterval of (a, b) such that in F(I) there is a solution yo~M of
Q(y)=¢ (as just proved) and such that a complete logarithmic set of

solutions {gi, - - -, g»} of Qy)=0 exists in F(I). (It was shown in
(1, §11] that if p=max |j: Bj( )0}, then e.f.d. in F(a, b) there exist
solutions g1, - - -, gp of Uy) =0 such that g;~x*i(log x)#; for some com-

plex a; and integer B; and such that (o, Brx) # (o, B;) if k#£j5.)

Then if yt is any solution of Q(y) =¢ which in F(I) is <x® for some
constant 8, then e.f.d. in F(I) there exist comstants c¢1, - - -, ¢, and a
trivial function T(x) such that y#=y,+ 2 7., cgi+T.

PRrOOF. y* — 7y, is a solution of Q(y) =0 and is <x° for some « so the
result follows immediately from [1, §12].
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