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1. Introduction. In this paper we investigate the asymptotic be-

havior of solutions of certain rath order nonhomogeneous linear ordi-

nary differential equations, £l(y) = c/>, near a singular point at oo. The

class of rath order linear differential operators, 12, treated here con-

sists roughly of those whose coefficients are complex functions, de-

fined and analytic in unbounded sectorial regions, and have asymp-

totic expansions as x—> oo in terms of real (but not necessarily inte-

gral) powers of x and/or functions (called trivial) which are of

smaller rate of growth (-<) than all powers of x as x—> =°. (We are

using here the concept of asymptotic equivalence (<~) as x—»«> and

the order relations "-<" introduced in [3, §13]. However, it should be

noted (see [3, §128(g)]) that the class of operators treated here in-

cludes as a special case those operators where no requirement is

imposed except that each coefficient be analytic and have an asymp-

totic expansion (in the customary sense) of the form >~1 C,x~x? with

Xy real and Xy-—»+oo as/—**. (A summary of the necessary defini-

tions from   [3] appears in §2 below.)

In [5], Strodt showed that if c/> is a nontrivial analytic function

which also possesses, as x—* 00, an asymptotic expansion in terms of

real powers of x and/or trivial functions, then the equation £2(y) —<p

has at least one solution y0 which is ~ to a logarithmic monomial

(i.e., a function of the form Axao(log x)ai(log log x)a2 • • • (log, x)"q

for complex K^O and real af) and such that if/^Cy0, then Q(f)~<<b.

(A solution with these two properties is called a principal solution in

[3, §69] and is clearly of minimal rate of growth at 00.)

In this paper we consider the case where <j> is any function ~ to a

logarithmic monomial, and we show in §3 that the equation fl(y) =c6

always has a principal solution. As a corollary (§5) we apply a result

proved in [l, §12] to obtain a representation theorem for those solu-

tions of Q(y) —<j> which are -< some power of x. Our method of proving

§3 consists of first obtaining a sufficiently close approximate solution

by successive integrations of a factored equation, and then using the

approximate solution to transform the equation into one in which an

exact solution can be obtained using [4, §99].

2. Concepts from [3]. (a) [3, §94]. Let — ir^og b^tr. For each non-
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negative real-valued function g on (0, ib — a)/2), let Vig) be the union

(over SEiO, ib-a)/2)) of all sectors a+S <arg(x-/f(S)) <b-8

where A(5)=g(5) expiiia+b)/2). The set of all Vig) (for all choices

of g) is denoted Fia, b) and is a filter base wfiich converges to oo.

A statement is said to hold except in finitely many directions (briefly,

e.f.d.) in Fia, b) if there are finitely many points n< • • • <rq in

(a, b) such that the statement holds in each of Fia, r/), Firi, r2),

■ • ■ , F(ra, b) separately.

(b) [3, §13]. If/is analytic in some Vig), then/—K) in Fia, b) means

that for any e>0, there is a gi such that |/(x)| <e for all xEV(gi).

/-<1 means that in addition to /—*0, all functions 0//—»0 where Ojf

= x log x • • • logy_ix/' and where 0f is the /feth iteration of the op-

erator Qj. Then /i-</2, /i~/s, fi~fi mean respectively fi/fi-<l, /1

—fi-<fi and fi^cfi for some constant c^O. If/-—-c, we write/(00) =c,

while if/-<l, we write/(»)= 0. If Tkf = x"o(log x)al • • • (log, x)* for

some r and Tkf is not constant, then by [3, §28] f-<M implies f'-<M'.

If f~M, then 8kif) will denote ak. If j^*, then s,-,-(a) will denote

the elementary symmetric function of degree i in a, a-1, ■ • • ,

a—i+1.

(c) [3, §49]. A logarithmic domain of rank zero (briefly an LD/)

over Fia, b) is a complex vector space E of functions (each analytic

in some Vig)) which contains the constants and such that any finite

linear combination of elements of E, with coefficients which for some

3^0 are functions of the form cxao(log x)"i • • • (log, x)"* (for real

a/), is either ~toa function of this latter form or is trivial.

3. The main theorem. Consider the equation fl(y)=</>, where Q(y) is

an nth order linear differential polynomial with coefficients in an LD0

over F(a, b), and where d> is a function which in F(a, b) is ~ to a loga-

rithmic monomial. If 8 is the operator 6y=xy', Q(y) may be written

Q(y) = E"-o Biix)d{y, where the functions Bj belong to an LD0. We

assume Bn is nontrivial. By dividing the equation i2(y)=0 through by

the highest power of x which is ~ to a coefficient Bj, we may assume that

for some m^O, 23m«l while for each j, 23y^Cl or 23y«l. Let Fia)

= /."-n Bijoo)^. Let Q be the logarithmic monomial such that <t>r^Q

and let 8jiQ) =<Xjfor eachj. Define a logarithmic monomial Mas follows.

If Fi<r0)?z0, let M= (F(o-o))_1<2- If <r0 is a root of F of multiplicity r,
then let

M = (FM(»d/Hr1(*r(»i + r))-\log xYQ

if   0-1E {-7-2, • • -,-r},

while if <TiG{ —1, —2, • • • , —r}, let
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M = c(log x)'(log2 x • • ■ log* x)Q

where k = min {/: /^ 2, cry5^ — 1}, and

c = (sr,r-x(*x + r))-1^ + ly^F^^/rl)-1.

Then: (1) The equation tt(y)=<p possesses at least one solution yo

■—'Af e.f.d. in F(a, b). (2) If yo is a solution of £2(y) =<p such that yo~AT

in some F(ax, bx), then for any function f which is ~<yo in F(ax, bx),

we have fl(/)^<</> in F(ax, bx). In particular, among all solutions of

Hl(y)=<p in F(ax, bx), y0 is of minimal rate of growth at <*>.

Proof of part (2). We consider fi(y) —Q and apply the algorithm

introduced in [3, §66] which produces the set of those logarithmic

monomials A (called principal monomials in [3, §67]) such that

fi(A)~<2 and 0(/)K<2 whenever f-<N. For U(y)-Q we find by ap-
plying the algorithm that AT" is the unique principal monomial. Hence

if f<M, then Q(f)<Q. Since y0~M and <p~Q, part (2) clearly fol-

lows.

The proof of part (1) will be based on a sequence of lemmas and

will be concluded in §6.

4. Lemma. Let y be a complex number and let f be a function which

in F(a, b) is ~ to a logarithmic monomial R. Let 8i(R) = X,. Define a

logarithmic monomial N as follcrws:

(a) T/X0^7, let N=(K0-y)-1R.
(b) If Xo = 7, let N = (Xg + l^Hlogx • • • log9x)A where a =

min [j:j<£l, Xy^-l}.
Then in F(a, b), the equation xy'—yy=i]/ has at least one solution

y*~N.

Proof. Under the change of variable y=xxoz and multiplication

by x-xo, the equation xy' —yy=\p becomes

(1) xz' + (Xo - y)z = ih

where ipo = x^mp.

Let A0=x_xoA. The proof is divided into three cases.

Case A. Re(X0-7)^0.

In this case, under z = No+N0w and division by (X0— 7)A0, equa-

tion (1) becomes,

(2) x(X0 - 7)"V +f(x)w = g(x),

where /<~1 (since xA0' -<No by a simple calculation) and where g^.1

since (X0 — y)N~$. Thus (2) is normal in the sense of [3, §83] with

divergence monomial (X0—7)x_1. Since cf = Re(X0— 7)^0, it follows



1968] SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 727

from [3, §111] (when d>0) and [3, §117] (when d<0) that (2) pos-

sesses a solution w0-<l in Fia, b). Then clearly y*=xxo(7V0+7VoWo) is

~7V and satisfies the equation xy' —yy=\f/.

Case B. X0=7.

Thus (1) is of the form z' =x~1ip0- With TV as defined in (b) above,

it is proved in [2, p. 272] that for some constant A, Zo^A+f^x'tyo

is ~A7 in 77a, b). Hence if y* = xx°Zo, then y* satisfies the conclusion.

Case C. Re(X0—7)=0 and X0t£7.

In this case, (1) may be written xz'—cxiz=\p0 where o- = i(X0—7)

is a nonzero real number. Under z= — iai^vl/^+w, this becomes

xw'— aiw=\pi where ipi = i<ri)~1x\f'o ■ Since ^o-<(Iog x)xi+1/2, ^1

-<(log x)xi~1/2 by §2(b), and hence ^1^0 since (log x)xi_eK'r'o for all

e>0. Under w= — iai)~lipi+u, we obtain xu' —aiu=\p2 where by

§2(b), yp2<(log x)xi-3'2 (thus \f>2-<fo since ^o^(log x)xi~' for all e>0).

Clearly this process can be repeated so as to make the constant term

-<(log x)a for a as small as desired. Hence there is a function

f~ — (<n')_tyo in Fia, b) such that under z=f+v, equation (1) becomes

(3) xv' — civ = d>i

where </>i is chosen so that,

(4) 4>i -< (log x)-1"

where/ = l+max{0, —2Xi}.

The technique we now employ to prove the existence of a solution

v0~<f of (3) is similar to the technique used by Strodt in the proof of

[6, Section 107].

Let EiEFia, b) be such that on 27, we have \x\ ^2 and

(5) Ui(x)|  S (log I*!)-1-"2.

For x and Xi in 27, let Bix, x/) =exp fX;/i—ai/u)du, where the contour

is any rectifiable path from x to Xi in £1. Then clearly, if we put

£(x, p) =73(x, px) for 1 ̂ p< °o, we have

(6) I £(x, p) I = 1    and    d7,(x, p)/dx = 0.

Hence,

I Lix, P) I p"11 <7(px) I  ^ (p log 2P)-1(log 2P)-"2

for x£27 and 1 ̂ p < °° ; and since the right side is

(-2//M(log2P)-^)/rfp,

we have by the M-test [7, p. 22] that the integral
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/CO

L(x, p)p~1<px(px)dp

is uniformly convergent on Ex and thus represents an analytic func-

tion there (e.g., [7, p. 100]) whose derivative may be calculated by

differentiating under the integral sign. In view of (5), clearly

(8) |»0(*)|   ^ (2/0(log |x|)-"2

on Ei and hence v0—*0 in F(a, b). Differentiating (7), we see easily

that vd —aix~1Vo=x~1<pi in Ex, so v0 is a solution of (3). Successively

differentiating (7) and using (6), we see that for all j

L(x, p)p-1(6'<bx)(xp)dp

(where, for example, (6<px) (xp) = xpc&Z (xp) etc.) in Ex. Since <px

-<(log x)-1-"2, it follows (see §2(b)) that d'<f>i-<(log x)-^"-"2 in

F(a, b), and so, for each j, there is an SjEF(a, b) and a constant c,

such that

| 0'0l(x) |    ^ Cy(l0g  | X | )-WD-«/* on Sy.

Hence by (8a), there is a C/ such that

(9) | »*,„(*) |   ^ C/ (log I x I )-^'2 in Sy.

Thus 0-"z>o—>0 in F(a, &) for each/. Now let p> 1. Then, by the defini-

tion of the operator 6P, 9pVo = Gdvo where G = log x ■ • • logp_i x. It is

routine to verify by induction on/ that for/=l, 2, ■ • •

i

(10) epv0 = J2 Gafi«vo,
a-1

where

(11) Gtti = Z »(«i, • • • , *y. a)Gh(dG)H ■ ■ ■ (d'-'G)*

in which the m's are constants, ii+ ■ ■ ■ +ij—j and i2+2i3+ ■ ■ •

+ (j — l)ij=j—a ior each term in (11). Now for all e>0, G-<(log x)1+'

so (see §2(b)) 0J'C7-<(log x)w+' for each/. Hence, by (11), for each a

and j we have Gaj—<(log x)a+ej for all e>0. Now t is a fixed positive

number and so for each given a and /, we have, by taking e = t/5j,

that G„y-<(log x)a+tli. Hence there exist SaiEF(a, b) and constants

d(a,j) such that on Sai;

\Gai(x)\   ^d(a,j)(log | x| )«+'/".

Thus by (9) and (10), for each p and/
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| ep'Voix) |   g mPjilog | x | )-"4

in some element of Fia, b) for some constant mpj. Thus 6pVo—»0 for

all £ and / since t > 0 and so

(12) v0-<l in F(a, 6).

Since v0 solves (3), we have

(13) v0 = io-i^ixvi - 4>/).

Since v0-<l, xv£ -<(log x)_1. Thus since <piK(log x)~1-"2, we have by

(13) that i>0-<(log x)_1. Hence xz7-<(log x)~2, and so if — l—t/2

< —2, we have vQ~<ilog x)~2. Continuing this way, if m is the greatest

integer <l+t/2, then j;0^C(log x)~m, and so since m + l^l+t/2, we

have by (13) that floKflog x)-1-"2 in Fia, b). Thus by (4), v0

-<(Iog x)xi_1 and so v0^f in Fia, b). Hence if z0=f+v0, then z0~/

and z0 solves (1). Hence y*=xxoz0 is a solution of xy' —yy=\p and

y*<~7V in Fia, b) concluding the proof.

5. Lemma. Assume the hypothesis and notation of §3. Let $iy)

= E"-o Bi( oo)d'y. Then there exists a function y* such that $iy*) =d>

and y*~M in Fia, b) iwhere M is as in §3).

Proof. Let Fia) = ^Bi(&)ai he of degree p. If £ = 0, take y*

= (230(°o))_1(p. Hence we may assume p>0. It is easy to verify that

if F(a) =bp(a— a/) ■ ■ ■ (a—ap) (where bp=Bp(cc)), then 6~:$

= (9—ai) o • • • o (9—ap) where the order of the factors is imma-

terial. Let <p*=bP1<p and let Q*=b~1Q. We solve $(y)=0 by succes-

sive integrations on b~1$=<f>* using §4, and we adopt the following

notation. We let yi be any solution of xy'—aiy=<p* given by §4.

Since yi is ~ to a logarithmic monomial, we let y2 be any solution of

xy'— a2y=yi given by §4. In general, yi+i is any solution of xy'

—aj+iy=yj (lfsj^p — 1) given by §4. Then clearly y*=yP solves

$(y) =4>- We will show y*~M.

Case I. F(o-0)?^0. By §4(a), yi~(<r0— a/)~1Q*. Similarly y2

~ia0— a2)-xiao— ai)_1()*. Continuing by §4(a), yP^iFiao))~xQ so

yp~M.
Case II. <r0 is a root of Fof multiplicity r and Oi€t: { — 1, • ■ • , —r}.

Let cvi= • • • =ar=a-0. Bv §4(b), yi~(<ri + l)_1(log x)Q*. Similarly

by    §4(b),

yj ~ (o-i + j)'1 • • •. (a + l)_1(Iog x)'Q*   for 2-^j^r.

Then    by    §4(a),

Vr+1 ~ (<r0 - Otr+x)-1^! + r)'1  •  •  • («n +  lj-'flog x)rQ*
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and by continuing to use §4(a), clearly

y, ~ A(log x)'Q    where A = (F^M/r^Ks^i + r))-1

so yp~M.

Case III. a0 is a root of F of multiplicity r and ax= —1. Thus,

minj/: /^l, a^—l}=k  (as in  §3). Thus,  by  §4(b),  (assuming

ax= ■ ■ ■ =ar = a0),

yx ~ (o-k + l)_1(log x ■ ■ • log* x)Q*.

Since 6i(yi)=0, we find by continuing up to r using §4(b) that

yr~((r— l)!)_1(log x)r_1yi. We now continue using §4(a) and find

that yP~bp(Fir)(ffo)/ri)-1yr. Since (r —1)! = 5r,r_i(<ri+r), clearly yp~ M.

Case IV. (T0 is a root of F of multiplicity r and axE { —2, • ■ • ,—r).

Let5=— <ti. Since o"i5^ — 1, by §4(b), (assuming «i= • • • =ar=<r0),

yi-~(o-i + l)_1(log x)Q*. Continuing up to 5 — 1, we find

y-i ~ [On +1) ■ ■ -(o-x + s- UHOog x^Q*.

Since Si(y,_i) = — 1, we have by §4(b),

y8 ~ (<r* + 1)_1 log x • ■ • log* xy,_i.

Since 5i(y,) =0, we have, using §4(b), that yr'~((r —5)!)_1(log x)r~*yB.

Now, using §4(a), we find yPr~bp(F(r)(ao)/rl)~1yr. Since (r — s)\

= {ax+r) • • ■ ((Ti+5 + 1), it follows that yp~M.

6. Conclusion of main theorem (§3). For each i, Bf=bi+Wi where

bi = Bi(°o) and o0(wi) <0. Letting $(y) = £,% bfry and T(y)

= St"-o w$*y, we have by §5 that there exists a function y*~Af in

F(a, b) such that $(y*) =c6. Under y=y*+z, fl(y) =c6 becomes

fl(z) = — T(y*). Now if S0(y*)=X, then it is easily verified that

So(#3y*) ̂ X for each / Letting e>0 be such that S0(wi) < —e for each

i, we have

(1) 8o(r(y*)) < X - e.

We now utilize a technique employed by Strodt in [5] which we

outline here for the reader's convenience. Let H={a: F(a)=0}.

Then if q is a real number not in TT and we let kt= (F(q))~1, it is easily

seen that the principal monomial of Q(y) — xq is kqxq. Hence if we let

A„(co) =x~"fi(&,x3co), then by the properties of a principal monomial

we have A9(l)~l and Aa(£)^l if £^<1. (Thus Aq is unimajoral in the

terminology of [4, Section 13]). Further, it is easily seen that At has

coefficients in an LD0(F(a, b)) and that 3A4/dco(B) is a nontrivial func-

tion. Thus by [4, Section 27], A, possesses at least one principal fac-
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torization sequence, that is, a sequence (Vi, ■ • • , Vn) of logarithmic

monomials such that A9 may be written

A4 = Vn ■ ■ • Vi + E EjVj ■ ■ ■ Vi

where Vj is the operator Vjiy)=y—y'/Vj and where each Et—<1.

Now by definition of At, it is easily verified that

n

Ag(7) =KH Bj(q + 6)'w,
j"=0

and so it follows from [4, Section 44] that all principal factorization

sequences for Ag(co) can be obtained as follows. If we let

CiA8(y) = kq E Bj(q + xy)'
j-o

and if TVi, ■ • ■ , Nn are the logarithmic monomials such that the

zeros yi, • • • , yn of C*Aq(y) satisfy Vy/TV,—»1 lor each j, then

(Fi, • • • , Vn) is a principal factorization sequence for Ag if and only

if (Vi, ■ • • , Vn) is a permutation of (TVi, • • • , 7V„) and for each j,

Vj is either -< or « to Vj+i. Since {230, • • • , 23„} is contained in an

LDoiFia, b)), it easily follows that if (Fi, • • • , Vn) is a principal

factorization sequence for A9, then for each j, Vj has the form

(2) Vj = CjX-1+'i

lor some constant Cj and some £,^0. Vj is called nonexceptional if

either 7>0 or cj is not purely imaginary, and (Vi, • • • , Vn) is called

nonexceptional if each Vj is nonexceptional. From the definition of

C*Aqiy), it follows that for q and 5 not in 77, we have

C*iAtiy) = £a(£s)-]CiAa((9 - s)x~1 + y).

We now fix s and we fix a principal factorization sequence for A,

(which may be exceptional). By the above relation, y* is a zero of

C*Aqiy) if and only if iq — s)x~1+y* is a zero of CfAs(y), and so it

easily follows from the previous discussion that except for finitely

many real q, A3(w) possesses a nonexceptional principal factorization

sequence. Thus we have outlined the proof given in [5] that there is

a finite set G of real numbers such that for any real number q$zG,

Ag(co) is unimajoral and possesses a nonexceptional principal fac-

torization sequence.

In our case here, we choose a real number q(£G such that X —e

<g<X, and let (Fi, • • • ,   V„) he a nonexceptional principal fac-
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torization sequence for this Aa. If Fy has the form in (2), then its

indicial function (as defined in [4, Section 61]) is the function defined

on (a, b) given by/,-(«) =cos(^a+arg cf). (Thus if £y = 0,/y is the con-

stant function cos(arg cf).) Since each Vj is non exceptional, each/y

has only finitely many zeros in (a, b). Hence the union of the sets of

roots of the fj is a finite set yx< ■ ■ ■ <y* in (a, b). Thus if I=(ax, bx)

is any of the intervals (a, yx), (yx, y2), ■ • ■ , (yd, b), then no indicial

function vanishes anywhere in T, so by definition [4, §98], (Vx, • • • ,

Vn) is unblocked in (ax, a2, bx) ior any a2. Furthermore, by (1) and

choice of q, x-qT(y*)<l, and so by definition [4, §88], (Vx, • • • , Vn)

is a strong factorization sequence for Ag(co)+x_9r(y*) in F(I). Hence

by [4, §99, Theorem II], the equation A,(co)+x~ar(y*) =0 possesses

a solution co0^Cl in F(I). Letting z0 = &9x''coo, we have Q(z0) = — T(y*);

and since q<\, we have Zo^<.y*. Letting yo=y*+Zo, we then have

K(yo) =<P and y0~M in ^(T), which concludes the proof.

7. Corollary. Under the hypothesis and notation of §3, let I be a

subinterval of (a, b) such that in F(I) there is a solution yo^M of

Q(y)=4> (as just proved) and such that a complete logarithmic set of

solutions {gx, ■ ■ ■ , gp} of Q(y)=0 exists in F(I). (It was shown in

[l, §11] that if p = max {/: T5y( co) ̂ 0}, then e.f.d. in F(a, b) there exist

solutions gx, ■ ■ ■ , gp ofQ,(y) =0 such that gy~xa/(log x)sj/or some com-

plex ctj and integer Bj and such that (ak, 8k) ?± (a3, Bj) if k j^j.)

Then if y* is any solution of Q(y) =c6 which in F(I) is -<x6 for some

constant 5, then e.f.d. in F(I) there exist constants cx, • • ■ , cP and a

trivial function T(x) such that y#=yo+ XX i ctg; + ^-

Proof, y* —yo is a solution of 0(y) =0 and is -<xa lor some a so the

result follows immediately from [l, §12].
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