AN OSCILLATION CRITERION FOR SECOND-ORDER
LINEAR DIFFERENTIAL EQUATIONS

W. J. COLES

1. Introduction. The well-known Leighton-Wintner [2], [3] oscilla-
tion theorem for

6] y' + p(x)y =0 $(x) continuous on [0, =)
is

THEOREM (i). Equation (1) is oscillatory on [0, «) if

) [r=+=
The case
3) lim inf z? <+ o

z— o

remains of interest and can produce either oscillatory or nonoscilla-
tory behavior.

Let
1 z t
4) P(x) = —f f p(s)dsdt.
X Jo 0
Hartman [1] has proved that nonoscillation of (1) implies that either
P(x) tends to a finite limit or else that lim inf,., P(x) = — =, so
that one has:
THEOREM (ii). — o <lim inf;,, P(x) <lim sups.. P(x) implies
oscillation.

THEOREM (iii). limg., P(x) = + « implies oscillation.

Since (2) implies the hypothesis of (iii), Theorem (iii) implies
Theorem (i).

The above theorems do not apply if P(x) tends to a fiaite limit or if
lim inf,,, P(x)=— o; e.g., they give no information about such
coefficients as p(x) = (x cos x —sin x) /x? or p(x) =x? sin x. The purpose
of this note is to derive oscillation criteria for certain classes of such
coefficients.
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2. Weighted averages. The idea is that additional information
about oscillation of (1) may be gained by considering weighted aver-
ages of [#p. Let f be a nonnegative, locally integrable function such
that [3fs0; then there is an a >0 such that

5)  A@ = A D@ = f "1 f 'p(s)dsds / f "o

exists on [a, ©).

THEOREM 1. If there exists a nonnegative, locally integrable function f
satisfying

(6) faw{f(t) (fotf(s)ds)k/ fo‘fz(S)ds} dt = + o

for some k, 0 < k < 1, and for a >0
and

@) lim A(x) = + o,

FAnd -l
then (1) is oscillatory.

Proor. The proof uses ideas of Hartman. We give a proof for f
continuous; the proof is easily modified for f locally integrable. Also,
if convenient, we will change the lower limits of the integrals in (5)
and (6), since the asymptotic behavior as x— o is not changed
thereby.

Suppose that (1) is nonoscillatory; then, for large enough a, a solu-
tion of the Riccati equation

(8) 2+ 224+ p(x) =0

exists on [a, «). Integration, multiplication by f, and integration give
z z t z
9 f f(H)z(t)dt +f f(® f 22(s)dsdt = (z(a) — A(x))f f(t)dt.

By hypothesis, the right-hand side tends to — «; hence, for large
enough x,

j;zf(t)z(t)dt+j;¢f(t)f.‘zz(s)dsdt <0

so that
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( j;z () j; tzz(s)dsdt)z < ( j;zf(z)z(,)dty

< f zfz(t)dt- f zz?(t)dt.

Let R(x) = [2f(¢) [s2%(s)dsdt. Since, forx 25> a, R(x) = [Ff()d¢- [222(t)dt,
we have from (10) that

o (f oar) ( f wow) / [ roas rowre.

For b>a, integration now gives

[ o ([ o) / [ row
1

S—l—( — 1)< ! (h=1-F)
= n\RMb) RMx))  hRMb)

(10)

contradicting (6).
Note that (6) implies that

(1) [ rwa=+ -,

a reasonable condition for a weight function. Conversely, if f is
bounded then (11) implies (6) for any k such that 0<k<1.

If (6) holds for some & on [0, 1), it holds for 2=0; but one advan-
tage in stating the theorem for 2> 0 is that weight functions x= (a>0)
are permitted.

The following corollary says roughly that if [§p is large enough on
a large enough set, then (1) is oscillatory regardless of the behavior of
J%p on the rest of the half line.

COROLLARY 1. Let S(x) = {t|0=t=<x and [ip>0}, and let m(S(x))
be the measure of S(x). If m(S(x))— © as x—« and if

1
m(S(x)) J s

t
f p(s)dsdt — oo

as x— o, then (1) is oscillatory.

Proor. Take f(x) to be 1 if [¢p>0 and 0 otherwise, let k=0, and
apply Theorem 1.
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ExaMpLEs. If p(x) =x sin x, Theorems (i) and (iii) fail, but The-
orem (ii) and Corollary 1 apply.

If p(x) =2 sin x, Theorems (i), (ii), and (iii) fail, but Corollary 1
applies.

Even if no suitable weight function exists for Theorem 1, (1) may
oscillate, as the following theorem implies.

THEOREM 2. If P(x) does not approach a finite limit as x— « and if
there is a nonnegative, locally integrable function f satisfying (6) and

(12) lim inf 4(x) > — o,

Z—®

then (1) is oscillatory.
The interesting way for P(x) to fail to have a limit is

13) lim inf P(x) = — «;
this is the only case not covered by Theorems (ii) and (iii).

Proor oF THEOREM 2. First we remark that since [*f=4 o if
g(x) is nondecreasing in x, we have:

(@) [*f(D)g(t)dt/[*f(t)dt is nondecreasing in x;

(b) if f#f(1)g(t)dt/ [*f(t)dt is bounded on [a, »), sois g(x).

Suppose that (1) is nonoscillatory. Via the Riccati equation we
have (by (12))

[ f “fysdt + f "1 f tzz(s)dsdt] / f o

=2(a) — A(x) £ K (K constant)on [b, ©),d > a.

We claim that [2f(t) [iz*(s)dsdt/ [3f(£)dt is bounded on [6, ). If not,
by (a), it tends to + «; and so, for large x,

f., zf(t)z(t)dt+—;—- f ") f '(s)dsdt

< (K— ( f "1 f ‘z2(s)dsdt/2 f ’ f(t)dt)) f “fat <.

Now one proceeds as in the proof of Theorem 1 to contradict (6).
So, by (b), J*s*< . But Hartman [1] has shown that if (1) is
nonoscillatory, then [*22< « if and only if P(x) has a finite limit as
x— . This contradiction completes the proof.
ExaMpLE. Let p(x) be such that [ip is 0 on [2n, 2n+1]
(n=0, 1,---) but is sufficiently negative on 2n+1,2n42)
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(n=0, 1, - - -) to produce lim inf,., P(x) = — . Let f(x) be 1 on
[2n, 2n41] (n=0, 1, - - -) and O elsewhere so that A(x)=0 on
(0, ). Theorems (i), (ii), (iii), and 1 do not apply, but Theorem 2
does.

3. The general selfadjoint case. Corresponding to Theorems 1 and
2 are Theorems 1° and 2° for the equation

(1°) (r(x)y")'+p(x)y=0 (r(x) >0; r(x) and p(x) continuous on [0, =)).

Equation (6) becomes

@ [o(f s6is) [ [ rapa =+ .

The proofs parallel those of Theorems 1 and 2 so are omitted here.
The result of Hartman, needed in the proof of Theorem 2, holds for
(1°) with f=2? replaced by [*z%/r.

The Leighton-Wintner theorem for (1°), namely that (1°) is oscil-
latory if [*p=[*1/r=+4, follows from Theorem 1° on taking
f=1/r and k=0. On the other hand, if (6°) holds for some f, then
J*1/r=+4 0 ; and (7) implies that lim sups.. f*p =+ «. Thus The-
orem 1° (and Theorem 1) are interesting only in case [*(1/r) =+ «,
lim inf,., [*p <lim SUpPses [*p =+ .

As with Theorem 2, the interesting case of Theorem 2° is
lim inf,,, P(x)=— oo.
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