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Regarding the existence of a right primary decomposition of an

ideal A in a ring R with ascending chain condition on ideals, Murdoch

has suggested the conjecture that if every prime ideal P which is not

right prime to the right upper P-component u(A, P) occurs as an

associated prime of A, then A has a right primary decomposition

[7, p. 739]. A counterexample to this conjecture is furnished in the

first part of this paper while the latter part gives a number of cri-

teria for a ring to have a Noetherian ideal theory and extends the

recent Barnes-Cunnea construction [2] of the primary decomposition

to a noncommutative ring.

1. Notations and terminology. Definitions are precisely those given

in [7, §8], except that, for the sake of easy computation, we formu-

late them in terms of ideals rather than of elements. Under set

theoretical inclusion, the family L(R) of all ideals of a ring R becomes

a complete modular lattice with an associative, join distributive

multiplication, a left residuation (:) and a right residuation (::) de-

fined as follows:

^:P=Z {XEL(R)\ XBQA},       A::B=Y. {XEL(R)\ BXQA}.

An ideal P of T? is said to be prime if P:X = P::X=P for any

XC^P. The intersection of all prime ideals containing AEL(R) is

called the radical of A and is denoted by rad A. In case rad A is a

prime ideal P, A is said to be quasi P-primary. An ideal Q of R is said

to be (right) primary if Q: :X = Q for any XCT_rad Q. By [6, Theorem

10], if 7,(T?) satisfies the ascending chain condition, then every ideal

contains a power of its radical. Accordingly the radical of a primary

ideal is prime.

An ideal T of R is said to be (right) tertiary if T::X=T for any

A^-rad P,where<-rad P denotes the ideal Z{A£7,(P.)| (T: :X)C\Y

= T implies Y=T} and is called the (right) tertiary radical of P. In

case L(R) satisfies the ascending chain condition, Lesieur and Croisot

[4] have succeeded in showing that the tertiary radical of a tertiary

ideal is prime, that every ideal A can be represented as an irredun-
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dant intersection of a finite number of tertiary ideals whose tertiary

radicals (called the associated primes of A) are distinct, and that

t-rad A is the intersection of the associated primes of A. Conse-

quently t-rad A^rad A and every primary ideal is tertiary.

An element x of R is (right) prime to A if A:: ix) =A, where (x)

denotes the principal ideal in 7? generated by x. It is said to be not

(right) prime to A otherwise. An ideal B is said to be not (right)

prime to A if every element of B is not prime to A. If A : :Bt^A, then

evidently B is not prime to A. The converse is true if 7? satisfies the

ascending chain condition on ideals [l, Theorem 10]. For a prime

ideal P of R the (right) upper P-component uiA, P) of A is defined to

be the intersection of all ideals B containing A such that every ele-

ment not in P is prime to B. If 7? satisfies the ascending chain condi-

tion on ideals, then uiA, P) = A :: (x) for some x(£P. In other words,

uiA, P) is the unique maximal element in the set {A : :X|XCT-P}.

2. The example. Let p be a positive prime integer and let G be the

direct sum of the groups Zv and Z^ of integers modulo p and p2 re-

spectively. The elements in G will be designated by ix, y) with x in

Zp and y in Zpi. In the full ring of endomorphisms of G consider the

subring 7? generated by the four endomorphisms a, /3, 7, and 5 defined

as follows:

aix, y) = (*, 0), 0ix,y) = iy,O),

yix, y) = (0, px),        Six, y) = (0, y).

Elements of 7? are linear combinations of these four endomor-

phisms with integral coefficients subject to the restrictions pa = pft

= py=p28 = 0. Multiplication is determined by distributive laws and

the multiplication table in Diagram 1.

O     J     T     T'   I     P    P'   R

O        R    P    P     V   V    V   O    0
R

a   »    y    h /\ / RRPP'ITTJ

a       a/300 P \      / P' T        R    R    R    P'   P'   P'    T     T

|S       0   0   0   0 y*\ V       R    R    P    R    P    V   P    V

y      y   pi 0   0 T\/T I        R    R    R    R    R    P'   P    I

5        0   0   a   6 PRRRRRRPP
0

P"       R    R    R    R    R     P'   R    P'

R        RRRRRRRR

Diagram 1 Diagram 2 Diagram 3
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An ideal A of R containing the element aa+bfi+cy+dh must also

contain aa+bfi, dfi, ay+bph, cy+db, aa+cy, afi+cpb, dy, and

bfi+db. By considering all possible choices of a, b, c, and d, we obtain

principal ideals generated by aa+bfi+cy+db; and this exhausts all

ideals of R. If we denote the linear span of a, p, ■ ■ ■ by [a, p, • • •],

then what follows is a list of all ideals of R.

R,        P = [a, fi, y, pd],        P' = [fi, 7, «],        7 = [fi, y, pd],

T=[fi,pS],        T'=[y,pS],       J=[po],        0.

Diagrams 2 and 3 show the ideal lattice of T^ and the right residuation

table for ideals of R.

2.1. Primary decomposition theory for R. On close inspection of

the right residuation table in Diagram 3, we find that the only prime

ideals of R are 7^ itself and the two maximal ideals P and P'. Obtain

then the radical of each ideal as the intersection of minimal prime

divisors; and check from the table that the only primary ideals are

those prime ideals. Accordingly the ideals 7, P, P', and R possess

primary decompositions, namely P(~\P', P, P' and R respectively;

while the ideals 0, J, T, T' are indecomposable.

2.2. Tertiary decomposition theory for R. The ideals 0, T', T,

P', P, and 7^ are D-irreducible and therefore are tertiary. Although

7 and / are not tertiary, they have the tertiary decompositions PtAP'

and TC\T' respectively. The tertiary radicals and associated primes

of respective ideals are shown in Diagram 4.

2.3. Upper components. The upper P-component u(A, P) of an

ideal A, as pointed out in §1, is the unique maximal element of the

form A::X where X%P, and this can be obtained directly from the

right residuation table. Similarly we can find the upper components

of ideals corresponding to P' and R and these are listed in the fol-

lowing table. It should be mentioned that the presence of an asterisk

in the last three rows indicates that the prime ideal is not prime to the

corresponding upper component.

0        J T       V      I P       P'      R

Radical II III P P' R
Primary decomposition —        — — —    PC\P' P P' R
Tertiary radical PI P P'       I P P' R
Tertiary decomposition 0     TOT' T V   Pf\P' P P' R
Associated primes P      P,P' P P'     P,P' P P' R
Upper P-component 0*       T* T* P*       P* P* R R
Upper P'-component T'*      V* P'* V*      P'* R P'* R
Upper ^-component 0        J T V        I P P' R

Diagram 4
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2.4. Conclusion. The ideals P and P' are associated primes of J

and are the only prime ideals not prime to the respective upper com-

ponents of J; yet J possesses no primary decompositions. Murdoch's

conjecture is not applicable to the ideal /. As we shall see in the next

section, this happens solely due to the fact that there are ideals

(namely 0, T, and T') for which not all the prime ideals not prime to

the respective upper components are associated primes.

3. Rings with Noetherian ideal theory. Following Curtis [3, p. 695 ]

we shall call a ring 7? a ring having a Noetherian ideal theory if R

satisfies the ascending chain condition on ideals and every ideal of 7?

is an intersection of a finite number of primary ideals.2 Such an inter-

section is called a primary decomposition. It can be verified easily

that every primary decomposition can be reduced to a normal one,

i.e., an irredundant intersection whose primary components have dis-

tinct radicals.

Riley, in response to the question as to when a ring may have a

Noetherian ideal theory, has given the following criterion: A right

Noetherian ring 7? with an identity has a Noetherian ideal theory if,

and only if it has the Artin-Rees property, namely, given any two

ideals A and B of 7?, AB=\AnDB for sufficiently large n [8, p. 195].

This property has also been adopted by Ward and Dilworth [9,

Theorem 11.1 ] to establish the existence of Noether lattices.

3.1. Lemma. 7/7? has the Artin-Rees property, then t-rad ^4CZrad A

for every ideal A of R. The converse is true if R satisfies the ascending

chain condition on ideals.

Proof. Let X be an ideal of 7? such that Y = A whenever YD iA :: X)

=A. By the Artin-Rees property, X"DiA : :X)QXiA : :X)<ZA for

sufficiently large n. Since the lattice L(7?) is modular,

iA + X«)DiA::X) = A + [X-D iA:: X)] = A.

Thus A+X" = A or X"Ci. This shows that t-rad AQrad A. To

prove the converse, we observe that under the hypotheses every ideal

of 7? contains a power of its tertiary radical. \tAB = TiDT2D ■ ■ ■ DTk

is a tertiary decomposition of AB, then for each i either BQTi or

^Ci-rad T{. In the latter case, 7\ contains a power of A. We may

2 Except for the difference in left-right terminology, Murdoch's definition of pri-

mary ideal is equivalent to that of Curtis. This has been proved by Curtis for the case

where R satisfies the ascending chain condition on right ideals. The critical step in

his proof is an application of Levitzki's theorem in showing that every ideal contains a

power of its radical. This can also be accomplished by [6, Theorem 10 |.
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choose n large enough that An (A B C Tt for every i and hence
AnC\BCZAB.

The Artin-Rees property has an intimate relation to an interest-

ing identity on ideal in a commutative Noether ring obtained by

Barnes and Cunnea, namely, given any two ideals A and B of R,

A = (A + Bn)C\(A:: B")

for sufficiently large n [2, Lemma 1 ]. [We shall refer to this as Barnes-

Cunnea property. ] In fact

3.2. Lemma. The Barnes-Cunnea property and the Artin-Rees prop-

erty are equivalent. Both properties imply the following ascending chain

condition on right quotients: For any two ideals A and B there exists a

positive integer k such that A::Bk = A: :Bk+1 = • • • .

Proof. Let R be a ring having the Barnes-Cunnea property and

let A and B be two ideals of R. Then for sufficiently large n, AB

= (AB+An)lA(AB::An)^)Ann,B. Conversely if R has the Artin-

Rees property, then there exists some k such that A^B(A::B)

^BklA (A::B). For any m ^ k, A::Bm^. [Bk (A (A::B)]::Bm
= (Bk::Bm)tA [(A :: B):: Bm] = R (A (A-.-.B^1) = A: :Bm+1. Thus

A::Bk = A::Bh+1 = ■ ■ ■ . By Artin-Rees property again,

A^Bk(A::Bk)^BntA(A::Bk)=BnfA(A::Bn) where n^k. In virtue

of modularity of the lattice L(R), A = A + [Bn (A (A::Bn) ]
= (A+B»)(A(A::B»).

3.3. Theorem. Each o/ the following conditions is necessary and

sufficient for a ring R with ascending chain condition on ideals to have a

Noetherian ideal theory:

(1) For any ideal A o/ R, every prime ideal P which is not prime to

the upper P-component u(A, P) occurs as an associated prime o/ A.

(2) For any ideal A o/ R, t-rad A Crad A.

(3) R has the Artin-Rees property.

(4) R has the Barnes-Cunnea property.

Proof. If R has a Noetherian ideal theory, then (1) follows from

[6, Theorem 18] and the fact that every primary ideal is tertiary.

In view of the proof of [7, Theorem 17], (1) implies (2). Suppose

now R has the Barnes-Cunnea property. To show that R has a

Noetherian ideal theory it suffices to prove that every D-irreducible

ideal is primary. Let A be a nonprimary ideal of R. Then there exist

ideals B and C of R such that BCQA but neither C nor any power

of B is contained in A. By (4), A = (A +Bn)C\(A: :Bn) for some n.
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This shows that A is properly reducible and therefore completes the

proof.

Incidentally, Murdoch's condition involves one of the many char-

acterizations of associated primes of ideals. Aside from the existing

characterizations given by Murdoch [6, Theorem 18], Curtis [3,

Definition 1.10 and Theorem 1.17(a)], Lesieur and Croisot [5, Theo-

rem 8.4], we shall describe a method of finding associated primes,

whose commutative counterpart has already been discovered by

Barnes and Cunnea [2, pp. 182-3].

Assume henceforth that 7? is a ring with a Noetherian ideal theory.

If Q is a P-primary divisor of an ideal A of R, then for sufficiently

large e, A C.A +PeQuiA +Pe, P)QQ where A +Pe is quasi P-primary

and u(A+Pe, P) is P-primary. The following theorem can then be

derived easily.

3.4. Theorem. Let Rbe a ring with a Noetherian ideal theory and let

Pi, Pi, ■ ■ ■ , Pn be associated primes of an ideal A of R such that

Pi, ■ • • , Pk (kUkn) are the minimal prime divisors of A. Then for suffi-

ciently large e,

(*) A = iA + Pi) DiA + Pi)D- ■ -DiA + p\)

is an irredundant quasi primary decomposition of A; and

A = uiA + P\, Pi) D uiA + P\, P2)D ■ ■ -DuiA + Pn, Pn)

is a normal primary decomposition of A.

Now let P be a minimal prime divisor of A. Then by (*), uiA, P)

contains a power of P and is therefore P-primary. If Q is any primary

divisor of A contained in uiA, P), then P = rad Q and so uiA, P)CZ(X

Hence uiA, P) is a minimal primary divisor of A. Conversely, if

uiA, P) is P-primary, then for any minimal prime divisor P' of A

contained in P, uiA, P) =u(A, P'). Hence P=P', a minimal prime

divisor of A. This proves a part of the following lemma, the rest is

obvious.

3.5. Lemma. Let Rbe a ring with a Noetherian ideal theory and let P

be a prime divisor of an ideal A. Then the following statements are

equivalent:

(1) P is a minimal prime divisor of A.

(2) uiA, P) is P-primary.

(3) uiA, P)=uiA +Pe, P) for sufficiently large e. Each of the state-

ments (l)-(3) implies

(4) uiA, P) is a minimal primary divisor of A.
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In view of the above lemma,

Ai = 0 {uiA, P) | P is a minimal prime divisor of A}

is a primary decomposition. Define Ak (k^2) inductively as follows:

^* = n{M(-4.P)|Pisaminimalprimedivisorof.4:(/4if>l • • -DAk-i)}.

Let A =QiDQiD ■ ■ ■ DQn be a normal primary decomposition of A

where rad Qi = Pi and Pi, ■ ■ • , Pq are the minimal prime divisors

of A. Then Qt = uiA, P.) for i = l, 2, • • • , q, and since none of the

Qi 0>°) contains Ai, we have

A:Ai = iQq+i-.Ai)D ■ ■ -DiQn:Ai)

which is a primary decomposition of A:Ai. Note that rad(OjMi)

= rad Qj = Pj. The minimal prime divisors of A :Ai must occur among

the Pj (j>q). Assume without loss of generality that these are

P,+i, • • • , PT. For each q<j-=r,

uiA, Pj) = QjD [D {Qi\ 1 = i ^ q    and    P,- CZ P,}].

Hence AiDAi = QiDQiD • ■ ■ DQr. If r<n, consider then the pri-

mary decomposition

AliAiDAi) = iQr+i-.iAiDAi))D ■ ■ ■ D iQ^iAiD A2)).

It can be proved that AiDAiDA3 = QiD • ■ • DQ3 for some s>r.

Continue in this way we arrive, after a finite number of steps, at

A:iAiDAiD ■ ■ -DAm) = R.

So, in case R has an identity, A =AiD ■ ■ ■ DAm = QiD ■ ■ • DQt for

some t^n. Since the original primary decomposition of A is irredun-

dant, t — n.

If P is an associated prime of A and if Pi, P2, • • • , Pn are associ-

ated primes of A such that A^PiEPiE • • • EPh=P, then we

call (Pi, Pi, ■ ■ ■ , Ph) a chain of P over A of length h. The unique

maximal length of all the chains of P over A is called the rank of

P over A.

3.6. Theorem. Let Rbe a ring with an identity and a Noetherian ideal

theory and let A be an ideal of R. Define A0 = R and Ak = D {uiA, P) \ P

is a minimal prime divisor of A : (ylo^ • • • DAk~i)} ik = 1, 2, • • • ).

Then ^40^40-40 ■ ■ • ~DAm=A for some m and the associated

primes and of A of rank k are precisely the minimal prime divisors of

A:Ak-i ik = l, 2, ■ • ■ , m).
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