
ON THE SUBRING GENERATED BY THE
SYMMETRIC ELEMENTS

W. E. BAXTER1

J. M. Osborn [3] has characterized those rings with involution J,

with 1, and such that every symmetric element has an inverse under

the additional hypothesis that S~~, the subring generated by ,S (the

set of symmetric elements), is A, the ring itself. In this paper we

raise the question as to when S~ = A under a weaker hypothesis and

prove the following theorem. (A henceforth is such that 2A =A and

2x=0 implies x=0 for any xEA.)

Theorem 1. Let A be a ring with 1 and suppose that S is a simple

Jordan ring under the Jordan multiplication, s o t = st+ts for all s and

t in S. Then either S~ = A or SEZ, the center of A, or K, the set o/ skew

elements, is an ideal o/ A with K2EZ, K3 = (8), and S is an associative

ring under Jordan multiplication.

We note that Osborn proves that under his hypothesis, either A is

a division ring; the direct sum of two division rings which are anti-

isomorphic, and / interchanges the summands; or 51 is a field under

Jordan multiplication, K is an ideal of A where K2 = (d). A corollary

to our result is

Corollary 1. Let A be as in Theorem 1. Suppose /urther that A con-

tains no nilpotent ideals. Then either A is simple or A is a direct sum

o/ two simple rings which are anti-isomorphic and such that J inter-

changes the direct summands.

In order to prove these results we note quickly

Lemma 1. 7/ U is a proper ideal o/ A then Jjr\S= (6).

This follows since SC\ U is a Jordan ideal of 5 and hence if not zero

is 5 itself. But IES implies that U = A.

We are ready to prove Theorem 1. Herstein [l] has shown that S~

is a Lie ideal of A and Zuev [4] has shown that either 5_ is commuta-

tive (in particular [S, S] = (0)) or 7= {u\ m£5~, uaES~ for all aEA }

is a nonzero two-sided ideal of S~. We next note that [S, S]CI. To
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observe this fact, let s, t, uES, kEK; then most certainly ist — ts)u

ES~, while [s, t]k = s[t, k]+ [s, k]t+{kst — tsk}. As the last quantity

is in S we have our desired conclusion. Moreover, [S, 5]C V = IDIJ.

Thus, by Lemma 1 we have either V = A and hence A =IES~~ (part

of our desired conclusion) or VDS=id). So far we have shown that

either S~ = A, [S, S] = id), or [S, S]C V, where Vis an ideal such that

VDS=id).
We will have almost proved Theorem 1 if we can show that the

latter situation i[S, S]QV, V an ideal with V= VJ and VDS= id))

implies either [S, S] = (0) or the latter possibility in the consequence

of the theorem. We now restrict ourselves to this case.

If uEV then there exists vEV so that u = vJ. Thus, as a conse-

quence of VDS=id) we have u+v = u+uJ= 0, or VC.K. V is an

ideal and so for all aG^4, uEV, ua — aJu=6 (in particular, [S, S] o K

= (S)). This guarantees that [S, K] is a Jordan ideal of 5 since [S, K]

oSCIo [S, S]+ [S, K]. Thus, the simplicity of 5 implies that

either [S, K] =S or [S, K] = id).
We now see that the subcase [S, K] =S leads to [S, S] = (0). To

this end, consider a, bEA, vEV. Then,

6 = vab — iab)Jv = (va — aJv)b + aJ(vb — bJv) + iaJbJ — Wa^v

or

[A, A]V = id).

In particular, [S, K][S, S] = (0) and so [S, K]=S and IES yields

[S,S] = i6).
Thus, the subcase [S, K] = (0) remains. Here we show that either

SEZ or the latter alternative of the theorem holds. In this case we

have [k2, s+l]=ko [k, s]+[k, kol]=d for all k, IEK, sES. Thus,
k2EZ for all kEK. Therefore, kl+lk = ik+l)2-k2-l2EZ for all

k, IEK or Ko KQZ. Now, [K, S]+K o K is a Jordan ideal of 5.

However, this is just Ko K under our hypothesis. Thus, either

K o K = SQZ (a desired conclusion) or K o K= (0). The latter situa-

tion now concerns us. Now for all aEA, kEK, ka — aJkE[S, K]

+KoK = id). Thus, k, IEK, aEA implies [kl, a]=kila-aJl)
+ (kaJ — ak)l = 9, or K2EZ. Under our assumptions we also note that

KAQKoS+[K, K]QK; that is, K is an ideal of A. Ko A=(0)
implies that k2=6 and k o 1 = 6 for all k, IEK. Thus, klk=6 and re-
placing k by k+m, m also in K, we have klm+mlk=0. But K is an

ideal, so iml)k+k(ml) =mlk — klm=B. Hence, A3 = (0). Now for all

s, t, uES, (so()o«=so((o«)T[l, [s, u]]. The latter term being
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zero implies that 5 is an associative ring under the Jordan multiplica-

tion.

Therefore, we have shown that either S~ = A, [S, S] = (6), or the

third consequence in the statement of the theorem holds. What re-

mains is to show that [S, S] = (6) implies SC.Z. Fix s£.S and consider

[s, K]. For all kEK, tES

[s, k] o t = [s, k o t] — k o [s, t].

By hypothesis the latter term is zero and so [s, K] is a Jordan ideal

of 5. Now, if [s, K] = (0) for each s£S then SQZ (as [S, S] = (9)).

We show that the other alternative, [u, K] =5 for some uES leads

to a contradiction. As [S, S] = (0) we conclude that [u, [u, a]]=6

for all aEA. Therefore, replacing a by ab and expanding out (using

the fact that 2x=0 implies x=0) we obtain for all a, bEA

(ua — au)(ub — bu) = 0.

Since 1£5 and [S, S] = (d), S2 = S and so [u, K]2 = S2 = S=(6), a

contradiction. Therefore, SC.Z as desired.

The proof of Corollary 1 follows. We first note that the additional

hypothesis on A implies that either S~=A or SQZ. Now, if A is not

simple then we wish to show that the alternative of the conclusion

holds. Let U be a proper nonzero ideal of A. It readily follows that

P= {u+uJ\uEU} is a Jordan ideal of S. Now, if T^(d) then 5= P

or A = U+ UJ. We show that indeed the summation is direct and U

is a simple ring. By Lemma 1, UfAS=(6). Hence, V= Uf\UJ is an

ideal with the property VC\S=(B) as well. As before, we conclude

that VQK, and F3=(0). Hence, V=(d) or the summation is direct.

Now, let Wt* (0) be an ideal of U. Then, R=UWU is an ideal of A,

contained in U, and nonzero. Else, (AR)3C UWU = (6), and this is a

contradiction to no nilpotent ideals by Herstein [l]. As before,

A =R+RJ. Therefore, UCRCZW as WJCUJ. Thus, U is simple as

desired. Hence, if we show T= (d) is impossible we are done. Now, the

latter implies that UQK, and analogous to a previous argument

Uz=(6). But the additional hypothesis forcing U=(B) makes this

impossible.

Corollary 2. Let A be without nilpotent ideals. Then either S~—A

or A is simple and [A:Z]^<± or A = U+ UJ, where U is simple and

[t/:Z]^4.

We have shown in Theorem 1 that either S~ — A or SQZ. Now

suppose the latter. Then given any r£^4 there exists sES, kEK so
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that r = s+k. Thus r2 — 2sr = k2 — s2EZ, or each element in A, satis-

fies a quadratic equation over Z. The latter, together with Corollary

1, by the work of Kaplansky [2], yields the desired conclusion.

In addition if A is prime then A cannot be written as U+ UJ and

so A is simple.

We assume 1 (£A. Then certain of the results carry over and others

do not. The absence of 1 does not allow us to conclude that if U,

an ideal, is such that U^S then U = A. However, we do have in this

situation that both a+aJ and aaJ are in U for all uEA. Thus a2EU

for all aEA, or A3QU (for example, A2=A implies that A = U). On

the other hand, if UDS=i6), then V=UDUJQK and F3 = (0).
T = {u+uJ\uEU} is either (0) or 5. If P=(0) then JJCZK and

7/3 = (0); while T = S implies that A*C.U+UJ. Now, if we restrict

our attention to the ideal 7 as defined previously in relation to T we

have either SCI+IJC.S~, which says that S~~ is an ideal or T= id);

that is, 7CA, IDS= id), and 73 = (0). As in the proof of Theorem 1

this implies that either [S, K] =S or [S, K] = id). As before, [S, K]

= 5 yields [S, S]S = S[S, S] = id) and [S, S]K C [S, S]oK
+ [[S, S], A]C [S, S] (as [5, S] o K = (0)). Thus, in this case, [S, S]

is an ideal with [S, S]3 = (0). On the other hand, [S, A] = (0) yields

the same argument as before. We summarize these remarks as

Theorem 2. Let A be a ring with involution and suppose that S is

simple Jordan. Then either S" is an ideal (o/ A) containing A3, or

[S, S] is an ideal with [S, S]3 = id), or K is an ideal, K2rZZ, K3 = (0)

and S is an associative ring under Jordan multiplication.

Now assume that there are no nilpotent ideals in A; then we have

either 5~ is an ideal or [S, S] = id). The latter yields, as in a previous

argument, that for all a, bEA, uES,

(ua — au)(ub — bu) = (&),

and replacing b by ba and expanding we have { (ua — au)A }2 = (0). But

by the hypothesis and Herstein [l] we conclude that SQZ. Thus,

either 51- is an ideal or SC.Z and every aEA satisfies a quadratic

equation over Z. Now if U is any proper nonzero ideal, then 5

= {u+uJ\uEU} and so a+aJ = u+uJ for each aEA and suitable

uEU. Therefore a-uEK and so A = U+K. If UDS=id) then,

under these hypotheses, UDK = id) and so the group sum is direct.

Finally, if A is prime and U is a nonzero ideal then U contains 5

(and hence the ideal S~, unless [S, S] = (0)), as the other alternative

UDS=i6) implies UDUJ=i6) or UUJ=id) which, by the hypoth-

esis, is impossible.
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