ON THE SUBRING GENERATED BY THE
SYMMETRIC ELEMENTS

W. E. BAXTER!

J. M. Osborn [3] has characterized those rings with involution J,
with 1, and such that every symmetric element has an inverse under
the additional hypothesis that S—, the subring generated by S (the
set of symmetric elements), is 4, the ring itself. In this paper we
raise the question as to when S—=4 under a weaker hypothesis and
prove the following theorem. (4 henceforth is such that 24 =4 and
2x =0 implies x =0 for any x & A4.)

THEOREM 1. Let A be a ring with 1 and suppose that S is a simple
Jordan ring under the Jordan multiplication, s o t=st-+ts for all s and
tin S. Then either S—=A or SCZ, the center of A, or K, the set of skew
elements, is an ideal of A with K*CZ, K?*=(0), and S is an associative
ring under Jordan multiplication.

We note that Osborn proves that under his hypothesis, either 4 is
a division ring; the direct sum of two division rings which are anti-
isomorphic, and J interchanges the summands; or S is a field under
Jordan multiplication, K is an ideal of 4 where K2=(f). A corollary
to our result is

COROLLARY 1. Let A be as in Theorem 1. Suppose further that A con-
tains no nilpotent ideals. Then either A is simple or A is a direct sum
of two simple rings which are anti-isomorphic and such that J inter-
changes the direct summands.

In order to prove these results we note quickly
LemMA 1. If U is a proper ideal of A then UNS = (6).

This follows since SN U is a Jordan ideal of S and hence if not zero
is S itself. But 1&.S implies that U=4.

We are ready to prove Theorem 1. Herstein [1] has shown that S-
is a Lie ideal of 4 and Zuev [4] has shown that either S~ is commuta-
tive (in particular [S, S]=(0)) or I = {u|uES-, ua€S-forallac4}
is a nonzero two-sided ideal of S—. We next note that [S, S]CI. To
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observe this fact, let s, ¢, &S, k&K ; then most certainly (st—ts)u
€S-, while [s, t]Je=s[t, ]+ [s, k]t+ { kst—tsk}. As the last quantity
is in S we have our desired conclusion. Moreover, [S, S]CV=INI.
Thus, by Lemma 1 we have either V=4 and hence 4 =1 .S~ (part
of our desired conclusion) or VNS = (). So far we have shown that
either S—=A4, [S, S] =), or [S, S]C V, where V is an ideal such that
VNS =(6).

We will have almost proved Theorem 1 if we can show that the
latter situation ([S, SJCV, V an ideal with V=T and VNS =(6))
implies either [S, S]= () or the latter possibility in the consequence
of the theorem. We now restrict ourselves to this case.

If €V then there exists v& 1V so that u=v/. Thus, as a conse-
quence of VNS=(0) we have u4+v=u+u’=0, or VCK. V is an
ideal and so for all aE A4, uE V, ua —a’u =0 (in particular, [S, S]o K
= (9)). This guarantees that [S, K] is a Jordan ideal of .S since [S, K]
0SCKo [S, S]+[S, K]. Thus, the simplicity of S implies that
either [S, K]=Sor [S, K]=8).

We now see that the subcase [S, K]=S leads to [S, S]=(0). To
this end, consider a, bEA, vE V. Then,

0 = vab — (ab)’v = (va — a/v)b + a’(vb — b/v) + (a’b' — b'a')v

or
[4, 4]V = ().

In particular, [S, K][S, S]=(0) and so [S, K]=S and 1ES yields
[S, S]=(0).

Thus, the subcase [S, K]=(f) remains. Here we show that either
SCZ or the latter alternative of the theorem holds. In this case we
have [k?, s+1]=%ko [k, s]+ [k, ko l]=0 for all k, IEK, s&S. Thus,
k2cZ for all k&K. Therefore, kl+lk=(k+1)2—k2—12&Z for all
kE, IEK or Ko KCZ. Now, [K, S|+K oK is a Jordan ideal of S.
However, this is just K o K under our hypothesis. Thus, either
K o K=SCZ (a desired conclusion) or K o K = (). The latter situa-
tion now concerns us. Now for all a€4, k€K, ka—a’kE[S, K]
4+KoK=(@). Thus, k, IEK, aEA implies [k, a]=Ek(la—a’l)
+ (ka’ —ak)l=0, or K2CZ. Under our assumptions we also note that
KACK o S+[K, K]CK; that is, K is an ideal of 4. K o K=(0)
implies that k2=0 and k o !=0 for all 2, IEK. Thus, klk=60 and re-
placing & by k+m, m also in K, we have klm+mlk=60. But K is an
ideal, so (ml)k+k(ml) =mik—klm=60. Hence, K*=(f). Now for all
s, t, uES, (sot)ou=so (tou)+t, [s, u]]. The latter term being
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zero implies that S is an associative ring under the Jordan multiplica-
tion.

Therefore, we have shown that either S—=4, [S, S]=(8), or the
third consequence in the statement of the theorem holds. What re-
mains is to show that [S, S] = (§) implies SCZ. Fix s& S and consider
[s, K]. For all k€K, tES

[s,k]lot = [s, ko] —ko[s,t].

By hypothesis the latter term is zero and so [s, K] is a Jordan ideal
of S. Now, if [s, K]=(0) for each s€S then SCZ (as [S, S]=(0)).
We show that the other alternative, [#, K]=.S for some # &S leads
to a contradiction. As [S, S]=(0) we conclude that [u, [«, a]]=0
for all a€A. Therefore, replacing a by ab and expanding out (using
the fact that 2x =0 implies x =0) we obtain for all a, bE A4

(ua — au)(ub — bu) = 6.

Since 1E€S and [S, S]=(@), S?=S and so [u4, K]?=52=S5S=(9), a
contradiction. Therefore, SCZ as desired.

The proof of Corollary 1 follows. We first note that the additional
hypothesis on 4 implies that either S—=4 or SCZ. Now, if 4 is not
simple then we wish to show that the alternative of the conclusion
holds. Let U be a proper nonzero ideal of A. It readily follows that
T={u+u’|u€ U} is a Jordan ideal of S. Now, if T5(f) then S=T
or A=U+U’. We show that indeed the summation is direct and U
is a simple ring. By Lemma 1, UNS=(0). Hence, V=UNU" is an
ideal with the property VN\S=(6) as well. As before, we conclude
that VCK, and V3=(0). Hence, V= () or the summation is direct.
Now, let W= (0) be an ideal of U. Then, R=UWU is an ideal of 4,
contained in U, and nonzero. Else, (AR)3CUWU = (0), and this is a
contradiction to no nilpotent ideals by Herstein [1]. As before,
A =R+RJ. Therefore, USRCW as W/CUV. Thus, U is simple as
desired. Hence, if we show T = (f) is impossible we are done. Now, the
latter implies that UCK, and analogous to a previous argument
U?=(0). But the additional hypothesis forcing U= () makes this
impossible.

COROLLARY 2. Let A be without nilpotent ideals. Then either S—=A
or A is simple and [A:Z]<4 or A=U~+U, where U is simple and
[U:Zz]=4.

We have shown in Theorem 1 that either S—=4 or SCZ. Now
suppose the latter. Then given any r& A there exists s&.S, k€K so
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that r =s+k. Thus r2—2sr=k2—s2&Z, or each element in 4, satis-
fies a quadratic equation over Z. The latter, together with Corollary
1, by the work of Kaplansky [2], yields the desired conclusion.

In addition if 4 is prime then 4 cannot be written as U+ UY and
so A is simple.

We assume 1 A. Then certain of the results carry over and others
do not. The absence of 1 does not allow us to conclude that if U,
an ideal, is such that UDS then U=A4. However, we do have in this
situation that both a+a’ and aa”’ are in U for all u& 4. Thus a?2€ U
for all aE4, or A*C U (for example, A2=4 implies that 4 = U). On
the other hand, if UNS=(@), then V=UNU'CK and V3=(9).
T= {u+w’|u€ U} is either (@) or S. If T=(0) then UCK and
U3=(0); while T=S implies that 43C U+ U’. Now, if we restrict
our attention to the ideal I as defined previously in relation to 7" we
have either SCI+1'CS—, which says that S~ is an ideal or T'=(f);
that is, ICK, INS=(0), and I*=(0). As in the proof of Theorem 1
this implies that either [S, K]=S or [S, K]=(0). As before, [S, K]
=S vyields [S, S]S = S[S, S] = (@) and [S, S]JKC [S, S]oK
+[[S, S], K]C[S, S] (as [S, S] o K=(8)). Thus, in this case, [S, S]
is an ideal with [S, S]*=(f). On the other hand, [S, K]= () yields
the same argument as before. We summarize these remarks as

THEOREM 2. Let A be a ring with involution and suppose that S is
simple Jordan. Then either S~ is an ideal (of A) containing A3, or
[S, S] is an ideal with [S, S]3=(6), or K is an ideal, K*CZ, K*= ()
and S is an associative ring under Jordan multiplication.

Now assume that there are no nilpotent ideals in A4 ; then we have
either S~ is an ideal or [S, S]=(8). The latter yields, as in a previous
argument, that for all ¢, bE4, &S,

(ua — au)(ub — bu) = (6),

and replacing b by ba and expanding we have { (wa—au)Ad } 2= (6). But
by the hypothesis and Herstein [1] we conclude that SCZ. Thus,
either S~ is an ideal or SCZ and every a & A4 satisfies a quadratic
equation over Z. Now if U is any proper nonzero ideal, then S
= {u+u’|u€ U} and so a+a’ =u+u’ for each a& A4 and suitable
uE U. Therefore a—uEK and so A=U+K. If UNS=(9) then,
under these hypotheses, UNK = (f) and so the group sum is direct.

Finally, if 4 is prime and U is a nonzero ideal then U contains .S
(and hence the ideal S—, unless [S, S]=(0)), as the other alternative
UNS=(0) implies UNU’ = (@) or UV’ = (f) which, by the hypoth-
esis, is impossible.
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