BLASCHKE QUOTIENTS AND NORMALITY

JOSEPH A. CIMA AND PETER COLWELL

Let f be meromorphic in the unit disc D and call f normal if the family $\{f \circ S_{\alpha}\}$ is normal, where $\{S_{\alpha}\}$ represents the family of one to one conformal mappings of D onto D. Further, if $\{z_n\}$ is a sequence in D and $w = \{w_1, w_2, w_3, \cdots\}$ is a vector in l^{∞} we say that $\{z_n\}$ interpolates if there is a function in H^{∞} with $f(z_n) = w_n$, $n = 1, 2, 3, \cdots$. A criterion that $\{z_n\}$ interpolate was given by L. Carleson [2] as

$$A(n) = \prod_{k=1:k\neq n}^{\infty} \left| (z_n - z_k)/(1 - \bar{z}_k z_n) \right| \geq \delta > 0$$

all $n=1, 2, 3, \cdots$. Our first result states that if $\{z_n\}$ interpolates then the Blaschke product for $\{z_n\}$, written as $B(z; z_n)$, has its modulus greater than some positive number η for points not close to $\{z_n\}$.

More precisely we let $\psi(z, z_n) = \left| (z - z_n)/(1 - \bar{z}_n z) \right|$ be the pseudo-hyperbolic distance in the disc of z to z_n . Then we have

THEOREM 1. If $\{z_n\}$ interpolates and $B(z) = B(z; z_n)$ is the Blaschke product for $\{z_n\}$ then for each $\epsilon > 0$ there is an $\eta > 0$ such that $|B(z)| \ge \eta$ whenever $\psi(z, z_n) \ge \epsilon$, $n = 1, 2, 3, \cdots$.

PROOF. Assume there is a sequence $\{t_k\}$ in D and $\epsilon_0 > 0$ so that $\psi(t_k, z_n) \ge \epsilon_0$ all k and n and that $B(t_k)$ tends to zero as k tends to infinity. By a result of A. T. Cargo [1, p. 142] we may select a subsequence of $\{t_k\}$, which we again write as $\{t_k\}$, so that the Blaschke product $A(z) = A(z; t_k)$ formed from the sequence $\{t_k\}$ has the property that

$$|A(z_n)| \geq a > 0, \quad n = 1, 2, 3, \cdots$$

We have then

$$|A(z)| + |B(z)| > 0, \quad z \in D.$$

Then as in Theorem 1 of [3] we can find functions $g_1(z)$ and $g_2(z)$ holomorphic in D and satisfying

$$A(z)g_1(z) + B(z)g_2(z) = 1, z \in D.$$

The sequence $\{(A(z_n))^{-1}\}$ is in l^{∞} so there is an f_1 in H^{∞} satisfying $f_1(z_n) = (A(z_n))^{-1}, n = 1, 2, 3, \cdots$. Also we have that

Received by the editors March 27, 1967.

$$(f_1(z) - g_1(z)) \cdot (B(z))^{-1} = h(z)$$

with h holomorphic in D.

Define a holomorphic function f_2 on D as follows:

$$f_2(z) = g_2(z) - h(z)A(z).$$

Then

$$f_1(z)A(z) + f_2(z)B(z) = 1, \quad z \in D,$$

and

$$f_2(z) = (1 - f_1(z)A(z)) \cdot (B(z))^{-1}$$

is a bounded holomorphic function. Evaluating f_2 on the sequence $\{t_n\}$ shows it is unbounded, which is a contradiction, and so we have the result.

If we are given sequences of distinct points $A_1 = \{\alpha_n\}$ and $A_2 = \{\beta_n\}$ in D with corresponding Blaschke products $B_1(z) = B(z; \alpha_n)$ and $B_2(z) = B(z; \beta_n)$, we have the following theorem concerning the normality of the quotient $B_1(z) \cdot (B_2(z))^{-1}$.

THEOREM 2. If A_1 and A_2 are disjoint interpolating sequences in D, then the meromorphic function $f(z) = B_1(z) \cdot (B_2(z))^{-1}$ is normal in D if and only if $A_1 \cup A_2$ interpolates.

PROOF. Assume first $f(z) = B_1(z)(B_2(z))^{-1}$ is normal in D. A criterion of O. Lehto and K. I. Virtanen [4, pp. 55-56] states that

$$\rho(f) \leq C |dz|/(1-|z|^2), |z| < 1,$$

where ρ is the spherical derivative of f and C is a positive constant. Evaluating this inequality on the points $\{\alpha_i\}$ of A_1 yields

$$|B_2(\alpha_i)| \geq (1/C) |B_1'(\alpha_i)| (1 - |\alpha_i|^2).$$

We denote the partial product

$$\frac{\left|\alpha_{j}\right|}{-\alpha_{j}}\left(\frac{1-\bar{\alpha}_{j}z}{z-\alpha_{j}}\right)B_{1}(z) \equiv \prod_{n=1;n\neq j}^{\infty} \frac{-\alpha_{n}}{\left|\alpha_{n}\right|}\left(\frac{z-\alpha_{n}}{1-\bar{\alpha}_{n}z}\right)$$

as $\prod_{j}(z)$ and write $B_1(z)$ as

$$B_1(z) = \frac{-\alpha_j}{|\alpha_j|} \left(\frac{z - \alpha_j}{1 - \bar{\alpha}_j z} \right) \cdot \prod_j (z).$$

The condition of L. Carleson quoted previously shows that $\left|\prod_{j}(\alpha_{j})\right| \ge \delta > 0$. This shows that

$$\liminf |B_2(\alpha_i)| \ge (1/C)\delta > 0.$$

Thus $A_1 \cup A_2$ interpolates.

Now assume $A_1 \cup A_2$ interpolates. If the set of numbers

$$|f'(z)| (1-|z|^2)/(1+|f(z)|^2)$$

were unbounded there must exist a sequence $\{z_k\}$ in D such that

$$|B_1(z_k)|^2 + |B_2(z_k)|^2 \to 0.$$

as k tends to infinity. By Theorem 1 it must be the case that for some subsequence of A_1 , say $\{\alpha_{k_n}\}$, we have $\psi(z_{k_n}, \alpha_{k_n})$ tends to zero. Also there must be a subsequence $\{\beta_{j_{k_n}}\}$ with $\psi(z_{j_{k_n}}, \beta_{j_{k_n}})$ tending to zero. This shows that $\psi(\alpha_{j_{k_n}}, \beta_{j_{k_n}})$ tends to zero which is a contradiction to $A_1 \cup A_2$ interpolating. The spherical derivative is bounded by a constant times $(1-|z|^2)^{-1}|dz|$ and so f is normal.

We point out that $\rho(f) = \rho(1/f)$ so that our Theorem 2 can be stated for $B_2(z) \cdot (B_1(z))^{-1}$. The referee has pointed out the following equivalence.

THEOREM 3. If A_1 and A_2 are disjoint interpolating sequences in D, then $B_1(z) \cdot (B_2(z))^{-1}$ is normal if and only if B_1 and B_2 are in no proper ideal of H^{∞} .

PROOF. If the ideal generated by B_1 and B_2 is not proper there are functions f and g in H^{∞} satisfying

$$f(z)B_1(z) + g(z)B_2(z) = 1, z \in D.$$

Setting $h_1(z) = f(z)B_1(z)$ and $h_2(z) = g(z)B_2(z)$ we observe that h_1 is zero on A_1 and one on A_2 . Similarly h_2 is one on A_1 and zero on A_2 . Using these functions and the hypothesis that A_1 and A_2 interpolate, we see that $A_1 \cup A_2$ interpolates.

Conversely, if $A_1 \cup A_2$ is interpolating then there is an $f \in H^{\infty}$ with $fB_1 = 1$ on A_2 . Hence $1 - fB_1$ is divisible by B_2 and thus one is in the ideal generated by B_1 and B_2 .

REFERENCES

- 1. G. T. Cargo, Normal functions, the Montel property, and interpolation in H^* , Michigan Math. J. 10 (1963), 141-146.
- L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930.
- **3.** J. A. Cima and G. D. Taylor, On the equation $f_1g_1+f_2g_2=1$ in H^{ρ} , Illinois J. Math. (to appear).
- 4. O. Lehto and K. I. Virtanen, Boundary behavior and normal meromorphic functions, Acta Math. 97(1957), 47-65.

University of North Carolina and Iowa State University