ON THE EXISTENCE THEOREM FOR DIFFERENTIAL EQUATIONS

JOEL W. ROBBIN

In this note we show how to derive the fundamental existence theorem for ordinary differential equations as a corollary of the implicit function theorem in Banach spaces. The proof of smoothness with respect to initial conditions is considerably shorter than existing proofs (see, for example [3], [4], or [5]). Throughout, a dot (i.e., ϕ) denotes differentiation with respect to t.

THEOREM. Let U be an open set in a Banach space E and let $f: R \times U \rightarrow E$ be a C^r map $(r \ge 1)$. Then for each $x_0 \in U$ there exists an open neighborhood V of x_0 in U, an open interval $(-\epsilon, \epsilon)$ about 0 in R and a map $\phi: (-\epsilon, \epsilon) \times V \rightarrow U$ such that

- (1) ϕ is C^{τ} ;
- (2) $\phi(0, x) = x \text{ for } x \in V;$
- (3) $\dot{\phi}(t, x) = f(t, \phi(t, x))$ for $(t, x) \in (-\epsilon, \epsilon) \times V$.

PROOF. We suppose without loss of generality that x_0 is the origin of E and that U is an open ball with center x_0 . Take U_0 to be the open ball whose center is x_0 and whose radius is half the radius of U. Let I denote the closed interval $[-1, 1] \subseteq R$. For p an integer ≥ 0 let $C^p(I, E)$ denote the Banach space of C^p maps from I to E (with the C^p topology), $C_0^p(I, E)$ be the (closed) subspace of $C^p(I, E)$ consisting of all $\gamma \in C^p(I, E)$ with $\gamma(0) = 0$, and $C_0^p(I, U_0)$ the set of all $\gamma \in C_0^p(I, E)$ such that $\gamma(I) \subseteq U_0$. Note that $C_0^p(I, U_0)$ is open in the Banach space $C_0^p(I, E)$. D denotes the differentiation operator (see [4] or [5]) and D_j denotes partial differentiation with respect to the jth variable.

Let $F: \mathbb{R} \times U_0 \times C_0^1(I, U_0) \rightarrow C_0(I, \mathbb{E})$ be the map defined by

$$F(a, x, \gamma)(t) = \dot{\gamma}(t) - af(at, x + \gamma(t))$$

for $a \in \mathbb{R}$, $x \in U_0$, $\gamma \in C_0^1(I, U_0)$ and $t \in I$. One easily verifies that F is a C^1 map between Banach spaces. (This is an especially easy instance of the so-called omega theorem of [1]. Note that the map $\gamma \to \dot{\gamma}$ is continuous linear.) The partial derivative with respect to γ at the point a = 0, $x = x_0$, $\gamma = 0$ evaluated at the "tangent vector" $\delta \in C_0^1(I, E)$ is given by

Received by the editors October 5, 1967.

¹ I am indebted to R. Abraham for suggesting this to me.

$$D_3F(0, x_0, 0)\delta(t) = \dot{\delta}(t);$$

it is clearly a toplinear isomorphism. Since $F(0, x_0, 0) = 0$ we may apply the implicit function theorem [4, p. 265]. This yields an open neighborhood $(-2\epsilon, 2\epsilon) \times V$ of $(0, x_0)$ in $R \times U_0$ and a C^1 map $H: (-2\epsilon, 2\epsilon) \times V \rightarrow C_0^1(I, U_0)$ such that

$$F(a, x, H(a, x)) = 0$$

for $(a, x) \in (-2\epsilon, 2\epsilon) \times V$. We define $\phi: (-\epsilon, \epsilon) \times V \rightarrow U$ by

$$\phi(t, x) = H(\epsilon, x)(t/\epsilon) + x.$$

 ϕ is C^1 : this follows immediately from the fact that the evaluation map $C_0^1(I, U_0) \times I \rightarrow U_0$ is C^1 (see [1] or [2, p. 25]). $\phi(0, x) = x$ since $H(\epsilon, x) \in C_0^1(I, U_0)$. Finally, since

$$\dot{\phi}(t, x) - f(t, \phi(t, x)) = (1/\epsilon)F(\epsilon, x, H(\epsilon, x))(t/\epsilon) = 0$$

it follows that ϕ is the solution curve. We have proved the theorem in the case r=1. The general case follows from the case r=1 by an easy (and standard) induction argument.

BIBLIOGRAPHY

- 1. R. Abraham, Lectures of Smale on differential topology, Mimeographed notes, Columbia Univ., New York, 1962.
- 2. R. Abraham and J. Robbin, Transversality of flows and mappings, Benjamin, New York, 1967.
- 3. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.
- 4. J. Dieudonné, Foundations of modern analysis, Academic Press, New York, 1960.
 - 5. S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.

University of Wisconsin