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In this note we show how to derive the fundamental existence

theorem for ordinary differential equations as a corollary of the im-

plicit function theorem in Banach spaces.1 The proof of smoothness

with respect to initial conditions is considerably shorter than existing

proofs (see, for example [3], [4], or [5]). Throughout, a dot (i.e., <j>)

denotes differentiation with respect to t.

Theorem. Let Ube an open set in a Banach space Eand letf: R X U—>E

be a C map (r ^ 1). Then for each XoEU there exists an open neighbor-

hood V of Xo in U, an open interval (—e, e) about 0 in R and a map

d>: (-«, e) X V-*U such that

(1) d>is C;

(2) <f>(0, x)=xfor xEV;
(3) d\(t, x) =f(t, <f>(t, x)) for (t, x) £(-£, e) X V.

Proof. We suppose without loss of generality that x0 is the origin of

E and that U is an open ball with center xo. Take Uo to be the open

ball whose center is xo and whose radius is half the radius of U. Let 7

denote the closed interval [ — 1, l]CT?. For p an integer ^0 let

CV(I, E) denote the Banach space of Cp maps from 7 to £ (with the

Cp topology), Cq(I, E) be the (closed) subspace of CP(I, E) consisting

of all yECp(I, E) with 7(0) =0, and C?(7, Uo) the set of all 7 £6^(7, E)
such that 7(7)CZ f/0. Note that C%(I, U0) is open in the Banach space

Cq (I, E). D denotes the differentiation operator (see [4] or [5]) and

Dj denotes partial differentiation with respect to the/th variable.

Let F: RX UoXCl(I, c70)->C°(7, E) be the map defined by

F(a, x, y)(t) = 7(0 - af(at, x + y(t))

for aER, x£ L70, 7£Cq(7, Uo) and /£7. One easily verifies that F is

a C1 map between Banach spaces. (This is an especially easy instance

of the so-called omega theorem of [l]. Note that the map 7—>y is

continuous linear.) The partial derivative with respect to 7 at the

point a = 0, x = xo, 7 = 0 evaluated at the "tangent vector" 5 £ C„(7, E)

is given by
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1 I am indebted to R. Abraham for suggesting this to me.
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7?3F(0, xo, 0)5(0 = Sit);

it is clearly a toplinear isomorphism. Since P(0, Xo, 0)=0 we may

apply the implicit function theorem [4, p. 265]. This yields an open

neighborhood(-2e,2€)XFof(0,x0)ini?XL7oandaC1map77: (-26,2e)

X V-+CHI, Uo) such that

F(o, x, H(a, x)) = 0

for (a, x)G(-2e, 2e) X V. We define cp: (-«, e)X F->77 by

<£(/, x) = #(«, x) (//<:) + x.

0 is C1: this follows immediately from the fact that the evaluation

map CHI, t/0)X7->c7o is C1 (see [l] or [2, p. 25]). 0(0, x)=x since

77(e, x) GCq(7, Uo). Finally, since

bit, x) -fit, (bit, x)) = (l/e)F(e, x, Hie, x))it/e) = 0

it follows that</> is the solution curve. We have proved the theorem in

the case r = 1. The general case follows from the case r = 1 by an easy

(and standard) induction argument.
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