A STRONG COMPARISON THEOREM FOR SELFADJOINT
ELLIPTIC EQUATIONS

KURT KREITH

The purpose of this note is to give a concise proof of a comparison
theorem for selfadjoint, second order elliptic equations which yields
stronger results than those previously derived in [1], [2] and [3]. All
coefficients and domains are to be sufficiently smooth so that the
variational techniques of Courant [4] can be applied. Specifically, it
is assumed that the first eigenfunction of the selfadjoint boundary
value problem
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can be determined uniquely (up to a multiplicative constant) by
minimizing
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over all “admissible” ¢ &®. The class ® consists of all real valued
functions which are continuous in D have piecewise continuous first
partials in D, vanish on {xEODI o(x)=4+ } and satisfy [pp2dx=1.
(Here, o(x) =4 « is used to denote the boundary condition v=0.)
It is further assumed that all coefficients and D are sufficiently regu-
lar so that this extremal function is a solution of (1) in the classical
sense.

THEOREM. Suppose u(x) and v(x) are solutions respectively of
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in a domain GO D and that
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If

(5) ou/dv + s(x)u =0 on dD
and

(6) dv/dv + o(x)v =0 ondD

with — o <a(x) <s(x) <+ «, then either v(x) has a zero in the interior
of D or else u is a constant multiple of v.

PrOOF. Let By={xEdD|a(x) <o} and B:= {xCID|s(x) < }.
Without loss of generality we may assume [pu?dx=1 so that u is
admissible with respect to the variational problem (2). If v(x)0
in the interior of D, then v is the first eigenfunction of (1) correspond-
ing to the eigenvalue A\;=0. Therefore
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However in view of (3), (5) and Green's theorem, the last term is zero
so that we have equality throughout the above expression. In particu-
lar, we see that #(x) is an extremal function for the variational prob-
lem (2) and therefore an eigenfunction of (1) corresponding to A\;=0.
In light of the simplicity of the first eigenvalue of (1), u is a constant
multiple of v.

Setting s(x)= 4 « on 4D, we obtain a stronger form of the com-
parison theorem derived in [3].
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