QUOTIENTS OF COMPLETELY REGULAR SPACES
C. J. HIMMELBERG!

In a previous paper [1] we gave necessary and sufficient conditions
for a quotient space of a pseudo-metrizable space to be pseudo-
metrizable. In this note we give a short proof of the corresponding
theorem for preservation of complete regularity by quotient maps.
The proof specializes in an obvious way to the pseudo-metric case
and has the advantage that, unlike the proof in [1], it requires
neither the use of uniformities nor the complicated construction of
that paper. Moreover, we obtain an interesting explicit definition of
a pseudo-metric (or, in the complete regularity case, a defining family
of pseudo-metrics) for the quotient space.

For the most part the terminology here is standard. But we wish
to make some things explicit. If p is a pseudo-metric for X, and if
e>0,xEX, and 4, BCX, then

N[z] = Npola] = {2 € X[ G, %) < ¢},
p(4, B) = inf{p(a,b)| a € 4,5 € B},
NJ[4] = N, 4] = {2 € X p(3, 4) < ¢}.

The topology on a space X defined by a family P of pseudo-metrics
for X is the topology with {N, [x]|pEP, e>0, xEX} as subbase.
(We do not require in the above definition that P separate points;
so the topology generated by P need not be Hausdorff.) Recall that
a topology on X is completely regular if and only if it can be defined
by a family of pseudo-metrics.

THEOREM 1. Let f be a function from a completely regular space X
onto a topological space Y, and suppose that Y has the quotient topology
relative to f. Then the following assertions are equivalent:

(1) Y is completely regular.

(2) There exists a family P, of pseudo-metrics defining the topology
of X and a subbase 8 of the topology of Y such that for each GES there
exists p&EPoand a set {e(y, p) | yeG } of positive real numbers satisfying

() Np.ewn [ Y]]1CG, if yEG,
(i) p(F Iyl f2[z]) 2 ey, p) =€z, p), if ¥, 2EG.

(3) There exists a family P, of pseudo-metrics defining the topology
of X such that the topology of Y is defined by the family Q= {g,| pE Py}
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of pseudo-metrics defined by

9(9,%) = inf 22 p(f~[yeaa], f[0]),
=1
where v, 2E Y, y;EY for all 1 £i<n, and the infimum is taken over all
finite chains y=yo, 1, * * *, Yn=2.

REMARK. Assertion (1) implies the existence of a single family P,
which satisfies the requirements of both (2) and (3). Also the proof of
(1)=(2) requires only that f be continuous, and not necessarily that
f also be a quotient map.

ProoF oF (1)=(2). Let Y be completely regular, let P, Q be fam-
ilies of pseudo-metrics which define the topologies of X, Y, respec-
tively. For each ¢ &0, let 8, be the topology on Y defined by ¢. Then
let s=U{s,|¢EQ}. For each (p, ) EPXQ, define p,: X X X—R by

pa(%,3) = p(x,9) + q(f(2), 1(y)), ifx,y€E X.

Let Po={p,| (p, 9) EP X Q}. Trivially, each member of P, is a con-
tinuous pseudo-metric for X; so the topology on X defined by P, is
smaller than the topology defined by P. Thus, since p,(x, ¥) = p(x, y),
for (p, ) EPXQ, and x, yEX, it follows that Py and P define the
same topology, i.e., P, defines the given topology on X. Now let
GE&s, say GES,, with ¢EQ, and let pEP be arbitrary. Define

(5,00 = q(» Y —G), ifyEG.

By the way ¢ was chosen, it is trivial that each such e(y, p,) is posi-
tive. It is also easy to check (i) and (ii) of (2).

ProoF oF (2)=>(3). Let P, and 8§ be given as in (2) and let Q be de-
fined as in (3). It is easily shown that each ¢,&Q is a pseudo-metric
for Y. Moreover for each p& Py, f is continuous (in fact decreases
distances) if X, Y are given the topologies defined by p, g,, respec-
tively. Thus f is continuous relative to the topologies defined by P,
and Q. All that remains to be shown is that the topology defined by
Q is larger than the quotient topology on Y. To do this it is sufficient
to show that each member of § is open in the topology defined by Q.
So let GES, and let pEP, and {e(y, p)IyEG} be as given by (2).
Then we claim that, for all yEG, g,(2,y) < €(y, p) =2 E G.

For suppose ¢,(z, y) <e(y, p). Then there exists a chain y=1y,, ,

-+ -, ¥a=2 of points of ¥ such that

*) > 6yl ) < €3, 2.

t=1
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In particular, p(f~[y], f [31]) <e(y, p). This means that p(f~*[y], «)
<e(y, p) for some u Ef~1[y;]. Consequently, uEf-1[G] and y; =1(u)
EaG.

Now apply (ii) of (2) to (*) to obtain

z 2 yisd, ) < €t 2) — 200, 7))
= 6(3’) P) - e(yy P) + 5(3’17 P)

= e(yl) P) .
Thus by repeating the argument following the inequality (¥*), we
deduce successively that v, vz, -+ - -, ¥, =2 all belong to G. We have

thus proved that G is open relative to ¢,, and hence is open in the
topology defined by Q.

Proor ofF (3)=(1). Trivial.

A simplified (Py and Q in the statements of (2) and (3), and P, Q in
the proof of (1)=>(2) will all have only one element) version of the
above argument now gives the following pseudo-metric version of
Theorem 1.

THEOREM 2. Let f be a funciion from a pseudo-metrizable space X
onto a topological space YV, and suppose that Y has the quotient topology
relative to f. Then the following assertions are equivalent:

(1) Y is pseudo-metrizable.

(2) There exists a pseudo-metric p defining the topology of X and a
subbase $ for the topology of Y such that for each GES there exists a set
{e(y)| yEG} of positive real numbers satisfying

(1) Ne(u) [f_l [y]]cf—l [G]r 'L:f yer
() p(f Iyl f 2D ze() —e(2), if v, 2EG.

(3) There exists a pseudo-metric p defining the topology of X such

that the topology of Y is defined by the pseudo-metric q defined by

0,9 = inf 3 (D), Sl

where v, &Y, y;EY, 1 1 <n, and the infimum is taken over all finite
chains y=y¢, ¥1, * * *, Yn=2.

REMARK. (1)e(2) is the main theorem of [1].
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