ON CRITERIA OF DEFINABILITY

WALTER FELSCHER

A class **K** of relational systems is AC_{δ} if there exists a set S of sentences (of the language determined by the type of relational systems in **K**) such that **K** consists precisely of the models of S: **K** = Mod(S). The class **K** is AC if, moreover, a finite set S can be chosen here. If **L** is a class of relational systems, a class $\mathbf{K} \subseteq \mathbf{L}$ is $AC_{\delta}(\mathbf{L})$ or $AC(\mathbf{L})$ if there exists a class **K**' such that $\mathbf{K} = \mathbf{K}' \cap \mathbf{L}$ and **K**' is AC_{δ} or AC respectively. Let Π , Ω , &\$, \$\mathcal{\theta}\$ be the operations of taking ultraproducts, ultralimits, elementary subsystems, and isomorphic images. Kochen [4] has shown

THEOREM 1. If $\mathbf{K} \subseteq \mathbf{L}$, \mathbf{K} is closed under Π , Ω , \mathfrak{g} and $\mathbf{L} - \mathbf{K}$ is closed under Ω , then \mathbf{K} is $A C_{\delta}(\mathbf{L})$. If, moreover, $\mathbf{L} - \mathbf{K}$ is closed under Π , then \mathbf{K} is $A C(\mathbf{L})$.

Kochen's proof is based on his earlier characterization of classes AC and AC_{δ} (Kochen [3, Theorem 11.6]), which follows from the present theorem by taking \mathbf{L} to be the class of all relational systems of the type under consideration. Now Kochen's proof of that characterization depended on a thorough analysis of the relationship between ultralimits and prenex normal forms. It is a first purpose of this note to give a new proof of Theorem 1, based solely on the following facts:

- (1) If $\langle A_i | i \in I \rangle$, $\langle B_i | i \in I \rangle$ are sequences of relational systems and $A_i \equiv B_i$ (A_i elementarily equivalent to B_i) for every $i \in I$, then $\Pi_D \langle A_i | i \in I \rangle \equiv \Pi_D \langle B_i | i \in I \rangle$ for every ultrafilter D on I (Frayne-Morel-Scott [1, Corollary 2.4]).
- (2) If $A \equiv B$, then A and B have isomorphic ultralimits (Kochen [3, Theorem 9.3]).
- (3) A class **K** is AC_{δ} if and only if **K** is closed under Π and δ (elementary equivalence) (Frayne-Morel-Scott [1, Theorem 2.13]). It should be noted that both (2) and (3) follow rather directly from Frayne's lemma.
- (4) If $A \equiv B$, then B is isomorphic to an elementary subsystem of a suitable ultrapower of A (Frayne-Morel-Scott [1, Theorem 2.12], Kochen [3, Lemma 9.1]).

It is well known that Kochen's characterization of classes AC_{δ} is an easy consequence of (2) and (3).

For a proof of Theorem 1, assume $K \subseteq L$ and define C(K) by $A \in C(K)$ if there exists $A' \in K$ and $A' \equiv A$; define C(L-K) sim-

Received by the editors April 21, 1967.

ilarly. If **K** is closed under Π , it follows from (1) that $\mathbf{C}(\mathbf{K})$ is closed under Π . Hence $\mathbf{C}(\mathbf{K})$ is AC_{δ} by (3). If both **K** and $\mathbf{L}-\mathbf{K}$ are closed under Ω and **K** is closed under \mathfrak{S} , it follows from (2) that $\mathbf{C}(\mathbf{K})$ and $\mathbf{C}(\mathbf{L}-\mathbf{K})$ are disjoint. Hence $\mathbf{C}(\mathbf{K}) \cap \mathbf{L} = \mathbf{K}$, i.e. **K** is $AC_{\delta}(\mathbf{L})$. If, moreover, $\mathbf{L}-\mathbf{K}$ is closed under Π , also $\mathbf{C}(\mathbf{L}-\mathbf{K})$ is AC_{δ} by symmetry. It can be assumed now that neither **K** nor $\mathbf{L}-\mathbf{K}$ are empty. If $\mathbf{Th}(\mathbf{K})$ and $\mathbf{Th}(\mathbf{L}-\mathbf{K})$ are the sets of sentences true in **K** and $\mathbf{L}-\mathbf{K}$ respectively, then $\mathbf{C}(\mathbf{K}) \cap \mathbf{C}(\mathbf{L}-\mathbf{K}) = 0$ shows that $\mathbf{Th}(\mathbf{K}) \cup \mathbf{Th}(\mathbf{L}-\mathbf{K})$ is inconsistent, while $\mathbf{Th}(\mathbf{K})$ and $\mathbf{Th}(\mathbf{L}-\mathbf{K})$ alone are consistent. Hence there exist finite and nonempty subsets $S_0 \subseteq \mathbf{Th}(\mathbf{K})$, $S_1 \subseteq \mathbf{Th}(\mathbf{L}-\mathbf{K})$ such that $S_0 \cup S_1$ is inconsistent, whence $\mathbf{Mod}(S_0) \cap \mathbf{Mod}(S_1) = 0$. Therefore $\mathbf{Mod}(S_0) \cap \mathbf{L} = \mathbf{K}$, i.e. **K** is $AC(\mathbf{L})$.

An even simpler argument, making use of (4) instead of (2), yields

THEOREM 2. If $K \subseteq L$, L is closed under \mathfrak{g} and K is closed under Π , \mathfrak{g} , $\mathfrak{Eg} \upharpoonright L$, then K is $A C_{\delta}(L)$. If, moreover, L - K is closed under Π , then K is A C(L).

Kochen ([3, Theorem 12.1], [4, Theorem 3]) has used Theorem 1 in order to give a mathematical characterization of definable model functions, of which Beth's theorem on definability is an immediate consequence. Here a model function U on a class \mathbf{L} of relational systems assigns to every $A \in \mathbf{L}$ a relational system $U(A) = \langle A, R_A \rangle$, having one additional new relation R_A of a fixed arity. U is definable with respect to \mathbf{L} if there exists a formula of the language determined by \mathbf{L} which, for every $A \in \mathbf{L}$, defines the relation R_A in terms of A. Now Theorem 2 can be applied in order to obtain

THEOREM 3. Let U be a model function on \mathbf{L} , and let \mathbf{L} be closed under \mathfrak{S} and Π . U is definable with respect to \mathbf{L} if and only if U commutes with the operations Π , \mathfrak{S} and $\mathfrak{E}\mathfrak{S}$.

The proof is essentially that of Kochen's Theorem 12.1 in [3]. Namely, let the relations R_A be n-ary. Let \mathbf{L}' be the class of all relational systems $\langle A, \alpha \rangle$, where $A \in \mathbf{L}$ and α is a sequence of n elements of the set s(A) underlying A; \mathbf{L}' then is described by a type that extends the type of \mathbf{L} by n new constants. Let \mathbf{K} be the class of all $\langle A, \alpha \rangle$ in \mathbf{L}' such that $\alpha \in R_A$. U will be definable with respect to \mathbf{L} if and only if \mathbf{K} is $AC(\mathbf{L}')$. Now with \mathbf{L} , also \mathbf{L}' is closed under \mathfrak{G} . It follows from Kochen's proof that U commutes with Π and \mathfrak{G} if and only if \mathbf{K} and $\mathbf{L}' - \mathbf{K}$ are closed under Π and \mathfrak{G} . Further, if U is definable then it commutes with \mathfrak{S} . Assume now that U commutes with \mathfrak{S} and let $\langle B, \beta \rangle \in \mathbf{L}'$ be an elementary subsystem of $\langle A, \alpha \rangle \in \mathbf{K}$. Then $\beta = \alpha$, and B is an elementary subsystem of A. Therefore,

 $\langle B, R_B \rangle$ is an elementary subsystem of $\langle A, R_A \rangle$, and in particular $R_B = s(B)^n \cap R_A$. But then $\beta = \alpha$ and $\alpha \in R_A$ implies $\beta \in R_B$, i.e. $\langle B, \beta \rangle \in \mathbf{K}$.

Theorem 3 has applications in Hoehnke's work [2] on the mathematical characterization of definable maps between classes of relational systems.

It follows from well-known results of Keisler's that sufficient belief in GCH would enable us to omit any assumptions concerning & in Theorem 2 and Theorem 3.

REFERENCES

- 1. T. Frayne, A. C. Morel and D. S. Scott, Reduced direct products, Fund. Math. 51 (1962), 195-228.
 - 2. H. J. Hoehnke, Über Modellkorrespondenzen, (to appear).
- 3. S. Kochen; Ultraproducts in the theory of models, Ann. of Math. 74 (1961), 221-261.
- 4. ——, "Topics in the theory of definition," pp. 170-176, in *The theory of models*, Amsterdam, 1965.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT FREIBURG, WEST GERMANY