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A class K of relational systems is ACs if there exists a set 5 of

sentences (of the language determined by the type of relational sys-

tems in K) such that K consists precisely of the models of 5: K

= Mod(5). The class K is AC if, moreover, a finite set 5 can be

chosen here. If L is a class of relational systems, a class KCZL is

ACi(L) or ^4C(L) if there exists a class K' such that K = K'PiL and

K' is AC& or AC respectively. Let II, Q, 88, d be the operations of

taking ultraproducts, ultralimits, elementary subsystems, and iso-

morphic images. Kochen [4] has shown

Theorem 1. If KCL, K is closed under II, fi, d and L-Kts closed

under £2, then K is ACi(L). If, moreover, L — K is closed under II, then

Kis AC(L).

Kochen's proof is based on his earlier characterization of classes A C

and ACs (Kochen [3, Theorem 11.6]), which follows from the present

theorem by taking L to be the class of all relational systems of the

type under consideration. Now Kochen's proof of that characteriza-

tion depended on a thorough analysis of the relationship between

ultralimits and prenex normal forms. It is a first purpose of this note

to give a new proof of Theorem 1, based solely on the following facts:

(1) If iAi\ iEI), iBi\ iEI) are sequences of relational systems and

Ai=Bi iAi elementarily equivalent to 73;) for every iEI, then

HD{Ai\ iEI)=HDiBi\iEI) for every ultrafilter D on 7 (Frayne-

Morel-Scott [l, Corollary 2.4]).

(2) If /I =73, then A and B have isomorphic ultralimits (Kochen

[3, Theorem 9.3]).

(3) A class K is A Cs if and only if K is closed under II and 8 (ele-

mentary equivalence) (Frayne-Morel-Scott [l, Theorem 2.13]).

It should be noted that both (2) and (3) follow rather directly from

Frayne's lemma.

(4) If A=B, then B is isomorphic to an elementary subsystem of

a suitable ultrapower of A (Frayne-Morel-Scott [l, Theorem 2.12],

Kochen [3, Lemma 9.1]).

It is well known that Kochen's characterization of classes ACs is

an easy consequence of (2) and (3).

For a proof of Theorem 1, assume KCZL and define C(K) by

AEC(K)  if there exists A'EK and A'=A; define C(L-K)  sim-
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ilarly. If K is closed under n, it follows from (1) that C(K) is closed

under n. Hence C(K) is ACs by (3). If both K and L —K are closed

under Q and K is closed under d, it follows from (2) that C(K) and

C(L-K) are disjoint. Hence C(K)HL=K, i.e. K is^4C{(L). If, more-

over, L —K is closed under n, also C(L —K) is ACs by symmetry.

It can be assumed now that neither K nor L —K are empty. If Th(K)

and Th(L —K) are the sets of sentences true in K and L —K respec-

tively, then C(K)nC(L-K)=0 shows that Th(K)UTh(L-K) is
inconsistent, while Th(K) and Th(L —K) alone are consistent. Hence

there exist finite and nonempty subsets .So^Th(K), 5iCTh(L — K)

such that So^JSx is inconsistent, whence Mod(5o)nMod(5i) =0.

Therefore Mod(S0)nL = K, i.e. K is ACQ,).

An even simpler argument, making use of (4) instead of (2), yields

Theorem 2. 7/ KCL, L is closed under 3 and K is closed under II,

&, S3 \L, then K is ACs(L). I/, moreover, L — K is closed under II, then

YL is ACQS).

Kochen ([3, Theorem 12.1 ], [4, Theorem 3]) has used Theorem 1

in order to give a mathematical characterization of definable model

functions, of which Beth's theorem on definability is an immediate

consequence. Here a model function U on a class L of relational sys-

tems assigns to every A £L a relational system U(A) = (A, RA),

having one additional new relation RA of a fixed arity. U is definable

with respect to L if there exists a formula of the language determined

by L which, for every A EI,, defines the relation RA in terms of A.

Now Theorem 2 can be applied in order to obtain

Theorem 3. Let U be a model /unction on L, and let L be closed under

S and n. U is definable with respect to L i/ and only i/ U commutes with

the operations n, S and S3.

The proof is essentially that of Kochen's Theorem 12.1 in [3].

Namely, let the relations RA be n-ary. Let L' be the class of all rela-

tional systems (A, a), where A EL and a is a sequence of n elements

of the set s(A) underlying A ; L' then is described by a type that ex-

tends the type of L by n new constants. Let K be the class of all

(A, a) in L' such that aERA- U will be definable with respect to L

if and only if K is ACQ'). Now with L, also L' is closed under 6.

It follows from Kochen's proof that U commutes with II and 8 if

and only if K and L' — K are closed under II and d. Further, if U is

definable then it commutes with S3. Assume now that U commutes

with Sg and let (B, fi)EL' be an elementary subsystem of (A, o:)£K.

Then fi — a, and B is an elementary subsystem of A. Therefore,
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iB, RB) is an elementary subsystem of iA, RA), and in particular

RB=siB)nDRA. But then $ = a and uERa implies PERb, i.e.

(73, 0>GK.
Theorem 3 has applications in Hoehnke's work [2] on the mathe-

matical characterization of definable maps between classes of rela-

tional systems.

It follows from well-known results of Keisler's that sufficient belief

in GCH would enable us to omit any assumptions concerning 88 in

Theorem 2 and Theorem 3.
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