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Abstract. The behavior of convex functions is of interest in connec-

tion with a wide variety of optimization problems. It is shown here

that this behavior is especially simple, in certain respects, when the

domain is a polytope or belongs to certain classes of sets closely re-

lated to polytopes; moreover, the poly topes and related classes are

actually characterized by this simplicity of behavior.

The following corollary is useful in mathematical economics: If D

is a boundedly polyhedral set and </> is a convex function on the rela-

tive interior of D such that d> is bounded on bounded sets, then d> can

be extended in a unique way to a continuous convex function on D.

Introduction. Throughout the paper, E denotes a finite-dimensional

Euclidean space. A subset of E is called a polytope provided that it is

the convex hull of a finite set of points, and is called boundedly poly-

hedral provided that its intersection with any polytope is a polytope.

A function <j>, whose domain D is a subset of E, is called convex pro-

vided that <f> is real-valued, D is convex, and

d>(Xx + (1 - X)y) =g X<b(x) + (1 - X)<b(y)

for all XG [0, l] and x, yCD. It is a familiar fact that <p is continuous

at interior points of D but need not be so at boundary points where it

can "jump upward," as is easily seen in the one-dimensional case. In

this case, on the other hand, it is clear that d> cannot jump downward

and hence is upper semicontinuous. Even this property fails to hold

generally in higher dimensions, but it does carry over if D is bound-

edly polyhedral. In fact, as we shall prove, the property characterizes

the boundedly polyhedral sets among the closed convex subsets of E.

From this there follows another characteristic property of boundedly

polyhedral sets which is useful in mathematical economics and other

applications of optimization theory:

If D is boundedly polyhedral and <j> is a convex function on the relative

interior of D which is bounded on bounded sets, then <j> can be extended

in a unique way to a continuous convex function on D. In general, our
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results show that the polytopes and closely related sets are exactly

those domains whose convex functions have nice boundary behavior.

The following is a consequence of more detailed results established

below.

For a bounded closed convex subset D of E, the following five conditions

are equivalent:

(P) D is a polytope.

(L) Every convex function 0 on D is upper Lipschitzian at each point

x of D; that is, there exists Lx< » such that <f>iy) —4>ix) =Lx\\y— x\\ for

ally ED.

(S) Every convex function on D is upper semicontinuous.

(M) Every convex function on D attains a maximum.

(B) Every convex function on D is bounded.

If A represents L, S, M or B, the weakened condition which results

from restricting (A) to convex functions which are

{lower semicontinuous, bounded, lower semicontinuous and bounded}

is denoted by {(A;), (A&), (Ai&)}.

For example, (B() asserts that every lower semicontinuous convex

function on D is bounded. Conditions (Bj) and (Bh,) are tautologies,

but it will be shown that for an arbitrary bounded closed convex set D in

E, all the other conditions are equivalent to (P). For unbounded sets the

situation is similar but somewhat more complicated.

Convex functions on convex polytopes. Let us begin by showing

that (P)=*(M) and (P)=>(L). Suppose that D is a polytope and <f> is

a convex function on D. If ii is the maximum of <6 on the (finite) set

of all extreme points of D, then sup <f>D=n< <x> and thus (P)=>(M).

If x is a point of D then D is the union of finitely many simplices, each

having x as a vertex; plainly (L) (or, for that matter, (S) or (M) or

(B)) holds for D if it holds for each of these simplices. But then the

desired conclusion ((P)=*(L)) follows easily, because a convex func-

tion on a simplex is majorized by an affine function coinciding with

it at all vertices of the simplex.

For a more quantitative proof that (P)=>(L), let 5 denote the mini-

mum of the distances from x to the various faces of D missing x, and

let Lx = (p— <j>ix))/d. Consider an arbitrary point y of D~{x\, and

let F denote the smallest face of D which includes both y and x. The

ray from x through y meets the relative boundary of F at a point z,

and \\z — x|| 2:5 because x is not in the smallest face of F which includes

z. Withy=Xx + (l— X)s for some X£[0, l], it follows that
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<p(y) - <b(x) _ <p(Xx + (1 - X)z) - d>(x)      Xd>(x) + (1 - X)d>(z) - <b(x)

\\y - 4 II** + (l - x)z - x\\ (i - x)||2 - x\\

_ 4>(z) - <b(x) < n - <t>(x)

||s - x\\ S

Let us now prove the first italicized statement of the introduction.

Suppose that D is boundedly polyhedral and the relative interior of

D is the domain of a convex function <p which is bounded on bounded

sets. As Fenchel has observed [l, pp. 74-75], <f> can be extended in a

unique way to a lower semicontinuous convex function # on D. On

each polytope in D, r> is upper Lipschitzian (for (P)=>(L)) and hence

upper semicontinuous. With D boundedly polyhedral, this implies

that </> is actually continuous and completes the proof.

For the second italicized statement of the introduction, let us sup-

pose that D is a bounded closed convex subset of E. We have shown

that (P)=J-(L) and (P)=s>(M), while it is evident that (L)=>(S) and

(M)=>(B). To complete the proof, we observe that (S) and (B) fail if

D is not a polytope. Indeed, there is an infinite sequence xi, x?. ■ ■ ■ of

distinct extreme points of D, and with <f>(xi) =i while d>(y) =0 for all

yG-D~{xi, X2, ■ ■ ■ }, <f> is a convex function on D which is neither

upper semicontinuous nor bounded. (Note, however, that <p is not

lower semicontinuous.)

The characterization theorems. We shall see that the polytopes,

the boundedly polyhedral sets, and the vector sums of polytopes and

closed convex cones can all be characterized in terms of the boundary

behavior of their convex functions. It is convenient to employ the

following notation for the three conditions.

(P) D is a polytope.

(BP) The intersection of D with any polytope is a polytope.

(P + C) D is the vector sum of a polytope and a closed convex cone.

Theorem 1. For a closed convex subset D of E the conditions (P), (L),

(hi), (M), (1VL), (B) and (B;) are equivalent.

Theorem 2. For a closed convex subset D of E the conditions (BP),

(L;,), (La), (S), (S(), (Sj) and (Sw) are equivalent.

Theorem 3. For a closed convex subset D of E the conditions (P + C),

(Mb) and (Ma) are equivalent.

The proofs of these theorems are all based on the following lemma,

which refines the construction in the last paragraph of the preceding

section.
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Lemma. If D is a closed convex subset of E whose set ext D of extreme

points is infinite, then D admits lower semicontinuous convex functions

n and f, both nonnegative, such that n is unbounded and f is bounded but

attains no maximum. If some bounded subset of ext D is infinite, then n

and f can be constructed so as not to be upper semicontinuous.

Proof of the Lemma. A point x of D is said to be an exposed point

provided that \x\ is the intersection of D with a supporting hyper-

plane or, equivalently, provided that E admits a linear form/* whose

maximum on D is attained precisely at x. For any such fx and for an

arbitrary positive e, let

MDiJx, e) = {y £ D:f.(y) ^ /.(*) - e}.

A standard argument based on the local compactness of D shows that

the family of sets { MD(fx, e): e> 0} is a basis for the neighborhoods of

x in D. From [3, p. 91] it follows that the set of all exposed points of

D is dense in the set of all extreme points, and hence under the present

hypothesis D has infinitely many exposed points. Let x\, xi, • • • be

a sequence of distinct exposed points of D such that no Xi is a cluster

point of the sequence, and for each i let /,- be a linear form whose

maximum on D is attained precisely at xt. For each i let

8i = min{||xy — xj[\lj ?* i] > 0

and choose e,->0 so that

MDifi,u) C{yG D:\\y - x,\\ < Si/3}.

The sets Moifi, «i) and MD(Jj, ef) are disjoint except when i=j. Let

£,•60 =0 for y £ D ~ MB{ fi, e.),

Uj) = ifiiy) - M*i) + *d/«       for y £ MD(fu *)>

so that £,- is a continuous convex function on D, £,- is nonnegative, and

the maximum of £,• is 1, attained only at s\. Finally, let

V = H ft,   and   f = £   . ,  A %i.
,=i ,-i t + 1

The functions n and f have the desired properties. When some

bounded subset of ext D is infinite, the sequence xa of exposed points

may be chosen to converge to a point Xo of D; then n and f are not

upper semicontinuous, for vixo) =£{xo) =0 while limr;(xa) = oo and

limf(xa) = l.

Proof of Theorem 1. Having proved already that (P)=»(M) and

(P)=>(L), we remark that the following implications are obvious:
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=» (MO =►
(M) ;      (BO-        (L)=>(L0-=> (B) =>

To complete the proof of Theorem 1 it suffices to show that (L0=KP)

and (B0=*(P). If D is unbounded then D contains a ray x+ [0, » [w

for somexED and some«G£~{o). For each yG-D let <p(y) = {«, y)2,

the square of the inner product of u and y. Then <f> is continuous and

convex, but is neither bounded on D nor upper Lipschitzian at x.

Hence the boundedness of D is implied by (BO and also by (LO- If D

is a bounded closed convex set which is not a polytope, the Lemma

implies the existence on D of an unbounded lower semicontinuous

convex function, thus contradicting (BO, and of a lower semicontinu-

ous convex function which is not upper semicontinuous and hence not

upper Lipschitzian, thus contradicting (LO- The proof of Theorem 1

is complete.

Proof of Theorem 2. We show first that (BP)=>(L6) and (BP)

=>(S). Consider a boundedly polyhedral set D, a point x of D, and a

convex function <p on D. Let D0 be a polytope such that yCD0 when-

ever yG-D and \\y—x\\ gl. Let d>0 denote the restriction of <p to D0,

whence (by the implication (P)=>(L) already established) there

exists Lx<<x> such that 4>(y) —<p(x) HkLx\\y—x|| for all yG-Do- In par-

ticular, <p is upper semicontinuous at x and we conclude (BP)=>(S).

If sup 4>D = p. < oo, then of course

4>(y) — 4>(x) ̂  max(I„ p. — <K*))||y — *||

for all yCD, whence (BP)=>(Lb).

The following implications are obvious:

=»(SO =*
(L»)=*(L»)=»(SI4).        (S) (S,»).

=> (St) =»

To complete the proof of Theorem 2 it suffices to show that if the

closed convex subset D of E is not boundedly polyhedral, then D

admits a bounded convex function which is lower semicontinuous but

not upper semicontinuous. Let dD denote the relative boundary of D,

and for each point x of dD, let cone (x, D) denote the union of all rays

which issue from x and pass through the various points of D~\x}.

From a known characterization of boundedly polyhedral sets [4, p.

95] there follows the existence of a point Xo of d-Dsuch that cone (xo, D)

is not closed, and then by [4, p. 88] there is a 2-dimensional flat Q

through Xo such that the set QC\D is not polyhedral at Xo. With Q 2-

dimensional, this implies that Xo is an accumulation point of the set

ext (QC\D), whence the Lemma guarantees the existence of a convex
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function <6 on QC\D such that <f>iQ(~^D) X [0, l] and <p is lower semi-

continuous but not upper semicontinuous. Let <5 be the supremum of

all affine forms a on D such that aiq)?±d>iq) for all qEQ^D and

a(x)^2 for all x£Z5. Plainly c5£>£ [0, 2] and c5, as a real-valued

supremum of affine forms, is convex and lower semicontinuous. It

remains only to show that $ is not upper semicontinuous, for which

it suffices to show that <6(<Zo) =<Kffo) for all qoEQ^D-

Consider an arbitrary e>0. In the 3-flat QXR, the point

iq0, <biqo)—t) is at positive distance from the closed convex set

{iq, r): qEiQf^D, r^cpiq)}, and hence (by a well-known separation

theorem) the point is strictly separated from the set by a 2-flat F in

QXR. Since <piQr\D)C [0, l] it is easily seen that F is at positive

distance from the closed convex set

{id, 2):dE d\ cexr,

whence F is contained in a hyperplane H at positive distance from the

set. Following a standard procedure, we define an affine form a on £

by the condition that (y, a(y)) £i? for all y ££. It is then verified that

a(c/0) > <X?o) — «,        a ■£ <f> on QC\ D, and a jS 2 on D.

This shows that <?(go) =<A(<Zo) and completes the proof.

An alternative construction of <5 is possible, avoiding the Lemma.

First observe that with the aid of the Decomposition Theorem stated

below, attention may be restricted to the case in which D contains no

line. With x0 as above, let Vdenote the union of [x0] with all rays in

3D which issue from Xo and let W denote the set of all points w of 3D

such that Xo lies in every hyperplane supporting D at w. Then

XoEVCZWCZdD. Let $ be the supremum of all affine forms a on D

such that <5(») ̂0 for all vE V and $iy) ^ 1 for all yEdD~W. Then

<5 is a bounded convex function on D which is lower semicontinuous

but not upper semicontinuous. The proof of this fact is left to the

reader. (For the proof it is helpful to know that D is the closed convex

hull of its exposed points together with its exposed rays [3, p. 91].)

In the proof of Theorem 3, the following result justifies a reduction

to the case of closed convex sets containing no line.

Decomposition Theorem. Suppose that D is a closed convex subset

of E, with 0£Z>. Let the union of all lines through 0 in D be denoted by

Ld io- linear subspace of E), the orthogonal supplement of Lz> by L/y, the

intersection DC\L^ by K~d, the union of all rays from 0 in Kr> by Cd (a

pointed closed convex cone), and the set of all extreme points of Kd by En-

Then
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D = Ld + Kd    and    Kd = Cd + con £d.

£ac/s point y of D admits a unique expression in the form y=y'+y",

with y' CLd and y" EiKd- Any convex function \p on Kd can be extended

to a convex function dy on D by setting q>(y) =ip(y") for all yG-D- Every

bounded convex function on D arises in this way from a bounded convex

function on KD.

Proof of Theorem 3. (P + C)=>(M6)=>(Mi6). The second implica-

tion is obvious. For the first, suppose that D—P + C, where P is a

polytope and C is a closed convex cone, and where we may assume

without loss of generality that 0(ED and 0 is the vertex of C. With

notation as in the Decomposition Theorem, let tt denote the orthog-

onal projection of E onto L^. Then irP is a polytope and Ld-\-P

^Ld+tP- It can be verified that Zjd + Cd = C, whence

D = C + P = CD + {LD + P) = CD + LD + tP = LD + (CD + irP)

and it follows that KD = Cd+tP- But then Ed, the set of all extreme

points of Kd, is contained in the (finite) set of all extreme points of

7T-P, so of course Ed is finite. By a theorem of Hirsch and Hoffman

[2, p. 364] (for an alternate proof, see [5]) it follows that every con-

vex function on D which is bounded above on D attains its Z>-supre-

mum at some point of Ed-

(MB)=>(P + C). If D does not satisfy the condition (P + C), then

neither does Kd- But Kd has infinitely many extreme points and

hence, by the Lemma, admits a lower semicontinuous bounded con-

vex function not attaining a maximum. This can be extended to such

a function on D.
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