A NOTE ON A THEOREM OF GANEA, HILTON AND PETERSON

C. S. HOO

Introduction. Let X be a space. We are interested in the question whether or not the loop space ΩX and the suspension ΣX are homotopy commutative, that is whether or not nil $X \leq 1$, conil $X \leq 1$ respectively. Let $i: X \models X \rightarrow X \lor X$ be the fibre of the inclusion $j: X \lor X \rightarrow X \times X$. Let $\nabla: X \lor X \rightarrow X$ be the folding map. Then in [3], Ganea, Hilton and Peterson proved the following

THEOREM 1. Let X be 1-connected. Then nil $X \leq 1$ if and only if $\nabla i = 0$.

Dually, let $q: X \times X \to X \wedge X$ be the cofibre of the inclusion j, and let $\Delta: X \to X \times X$ be the diagonal map. Let $e': X \wedge X \to \Omega\Sigma(X \wedge X)$ be the canonical imbedding. Then in [3], the authors also proved

THEOREM 2. Let X be o-connected. Then conil $X \le 1$ if and only if $e'q \triangle = 0$.

This paper represents an attempt to understand these theorems. Let $c: \Omega(X \vee X) \times \Omega(X \vee X) \to \Omega(X \vee X)$ be the commutator map. We shall define below a map $\bar{c}: \Sigma(\Omega X \times \Omega X) \to X \vee X$ obtained from c. Applying the co-Hopf construction, we have a map $H(\bar{c}): \Omega\Sigma(\Omega X \times \Omega X) \to \Omega(X \triangleright X)$. Then we prove

Theorem 3. $c = \Omega(\nabla i)H(\bar{c})e': \Omega X \times \Omega X \rightarrow \Omega X$, the commutator map.

We observe, of course, that the condition for nil $X \le 1$ is precisely c = 0. Dually, let $c' : \Sigma(X \times X) \to \Sigma(X \times X) \lor \Sigma(X \times X)$ be the cocommutator map. This gives a map $\bar{c}' : X \times X \to \Omega(\Sigma X \lor \Sigma X)$. The Hopf construction then gives a map $J(\bar{c}') : \Sigma(X \land X) \to \Sigma\Omega(\Sigma X \lor \Sigma X)$. Let $e : \Sigma\Omega(\Sigma X \lor \Sigma X) \to \Sigma X \lor \Sigma X$ be the map having $1_{\Omega(\Sigma X \lor \Sigma X)}$ as its adjoint. Let us denote the cocommutator product $\Sigma X \to \Sigma X \lor \Sigma X$ by c' also. The condition for conil $X \le 1$ is precisely c' = 0. We prove

Theorem 4. $c' = eJ(\bar{c}')\Sigma(q\triangle): \Sigma X \rightarrow \Sigma X \bigvee \Sigma X$.

We work in the category of spaces with base point and having the homotopy type of countable CW-complexes. For simplicity, we shall frequently use the same symbol for a map and its homotopy class. 1. Let A, B be spaces. We have the fibration $A
ightharpoonup B
ightharpoonup A \times B
such that <math>(\Omega j)\chi \simeq 1_{\Omega(A \times B)}$. In fact we can take $\chi = \Omega(i_A p_A) + \Omega(i_B p_B)$ where p_A , p_B are the projections of $A \times B$ onto the factors and $i_A \colon A \to A \lor B$, $i_B \colon B \to A \lor B$ are the inclusions. The exact sequence of the fibration now shows that there exists a unique element $[g] \in [\Omega(A \lor B), \Omega(A \triangleright B)]$ such that $1_{\Omega(A \lor B)} = (\Omega i)g + \chi(\Omega j)$.

Now for any space X and a map $f: X \to A \setminus B$ we can form the map $H(f) = g(\Omega f): \Omega X \to \Omega(A \triangleright B)$. We shall call this the co-Hopf construction. The element [H(f)] is the unique element of $[\Omega X, \Omega(A \triangleright B)]$ satisfying $[\Omega f] = (\Omega i)_{\#}[H(f)] + [\chi \Omega(jf)] = (\Omega i)_{\#}[H(f)] + [\Omega(i_{A}\pi_{A}f)] + [\Omega(i_{B}\pi_{B}f)]$ where $\pi_{A}: A \setminus B \to A$, $\pi_{B}: A \setminus B \to B$ are induced by the projections onto the factors.

For spaces X, Y we have a bijection $\tau\colon [\Sigma X, Y] \to [X, \Omega Y]$ which takes each map to its adjoint. Suppose X is a given space. We have a projection $p\colon \Sigma\Omega X\to X$ such that $\tau(p)=1_{\Omega X}$. Let $p_1=i_1p$, $p_2=i_2p$ where $i_1, i_2\colon X\to X\vee X$ are the injections in the first and second copies of X respectively. Let $c\colon \Omega(X\vee X)\times\Omega(X\vee X)\to\Omega(X\vee X)$ be the commutator map. Then we can form the map $\bar{c}=\tau^{-1}\{c(\tau(p_1)\times\tau(p_2))\}\colon \Sigma(\Omega X\times\Omega X)\to X\vee X$. It is now easily verified that $\nabla\bar{c}=\tau^{-1}(c)$. The co-Hopf construction, applied to \bar{c} , gives an element $H(\bar{c})\colon \Omega\Sigma(\Omega X\times\Omega X)\to \Omega(X\flat X)$. Let $e'\colon \Omega X\times\Omega X\to \Omega\Sigma(\Omega X\times\Omega X)$ be such that $e'=\tau(1_{\Sigma(\Omega X\times\Omega X)})$. It is easily seen that $\Omega(\tau^{-1}(c))e'=c\colon \Omega X\times\Omega X\to \Omega X$, the commutator map. Since $\nabla\bar{c}=\tau^{-1}(c)$, Theorem 3 follows immediately from

Theorem 5. $\Omega(\nabla \bar{c}) = \Omega(\nabla i)H(\bar{c}): \Omega\Sigma(\Omega X \times \Omega X) \rightarrow \Omega X$.

PROOF. $H(\bar{c})$ satisfies $\Omega \bar{c} = (\Omega i)H(\bar{c}) + \Omega(i_1\pi_1\bar{c}) + \Omega(i_2\pi_2\bar{c})$ where $\pi_1, \pi_2 \colon X \vee X \to X$ are induced by the projections onto the factors, and $i_1, i_2 \colon X \to X \vee X$ are the imbeddings in the first and second copies of X respectively. We have $\Omega(\nabla \bar{c}) = \Omega(\nabla i)H(\bar{c}) + \Omega(\nabla i_1\pi_1\bar{c}) + \Omega(\nabla i_2\pi_2\bar{c})$. Let ϕ be the loop multiplication on ΩX and μ the loop inverse. Then a simple check shows that $\tau(\nabla i_1\pi_1\bar{c}) = \phi\{\phi(1\times^*)\triangle\times\phi(1\times^*)\triangle\mu\}\triangle r_1$ where \triangle is the diagonal map and $r_1 \colon \Omega X \times \Omega X \to \Omega X$ is the projection onto the first factor. Since $\phi(1\times^*)\triangle\simeq 1$ and $\phi(1\times\mu)\triangle\simeq^*$, we have $\tau(\nabla i_1\pi_1\bar{c}) = 0$. Hence $\nabla i_1\pi_1\bar{c} = 0$. Similarly $\nabla i_2\pi_2\bar{c} = 0$. It follows then that $\Omega(\nabla \bar{c}) = \Omega(\nabla i)H(\bar{c})$.

Theorems 1 and 3 are the immediate

COROLLARY. Let X be 1-connected. If $\Omega(\nabla i) = 0$, then $\nabla i = 0$.

REMARK. In [3], it is shown that there exist maps a, b such that ba = 1, $ib = \bar{c}$. It is clear from the above that $H(\bar{c}) = \Omega b$.

1968]

2. We now dualise. Let p_1 , $p_2: X \times X \to X$ be the projections, and let $e_i = e'p_i$ where $e': X \to \Omega \Sigma X$ is the canonical imbedding. Let c' be the cocommutator map $\Sigma(X \times X) \to \Sigma(X \times X) \lor \Sigma(X \times X)$. Let $\bar{c}' = \tau \{ (\tau^{-1}(e_1) \lor \tau^{-1}(e_2))c' \} : X \times X \to \Omega(\Sigma X \lor \Sigma X)$. Then $\bar{c}' \triangle = \tau(c')$ where \triangle is the diagonal map.

Let A, B be spaces. We consider the cofibration $A \lor B \xrightarrow{f} A \times B$ $\xrightarrow{g} A \land B$. There exists a map $p: \Sigma(A \times B) \to \Sigma(A \lor B)$ such that $p(\Sigma j) \simeq 1_{\Sigma(A \lor B)}$. The exact sequence of the cofibration now shows that $(\Sigma q)^{f}$ is a monomorphism. Dual to the above, we now see that there exists a unique element $[d] \in [\Sigma(A \land B), \Sigma(A \times B)]$ satisfying $1_{\Sigma(A \times B)} = d(\Sigma q) + (\Sigma j)p$.

Given a map $f: A \times B \to X$ we can now define $J(f) = (\Sigma f)d: \Sigma(A \wedge B) \to \Sigma X$. We shall call J(f) the map obtained from f by the Hopf construction. The element [J(f)] is the unique element satisfying $[\Sigma f] = (\Sigma q)^{\sharp} [J(f)] + [\Sigma (fj)p] = (\Sigma q)^{\sharp} [J(f)] + [\Sigma (fjp_A)] + [\Sigma (fjp_B)]$ where p_A , $p_B: A \times B \to A \vee B$ are induced by the projections onto the first and second coordinates respectively. We can now consider the element $J(\bar{c}'): \Sigma(X \wedge X) \to \Sigma\Omega(\Sigma X \vee \Sigma X)$. We have $J(\bar{c}')\Sigma(q\triangle), \Sigma(\bar{c}'\triangle): \Sigma X \to \Sigma\Omega(\Sigma X \vee \Sigma X)$. Let $e: \Sigma\Omega(\Sigma X \vee \Sigma X) \to \Sigma X \vee \Sigma X$ be such that $\tau(e) = 1_{\Omega(\Sigma X \vee \Sigma X)}$. Let $c': \Sigma X \to \Sigma X \vee \Sigma X$ be the cocommutator map. It is now easily checked that $e\Sigma(\tau(c')) = c'$. Since $\bar{c}' \triangle = \tau(c')$. Theorem 4 follows immediately from

THEOREM 6. $\Sigma(\bar{c}'\triangle) = J(\bar{c}')\Sigma(q\triangle) : \Sigma X \rightarrow \Sigma\Omega(\Sigma X \vee \Sigma X)$.

Proof. The proof is completely dual to that of Theorem 5, and we shall omit it.

REMARK 1. In [3], it is shown that we can find maps a', b' such that b'a'=1, $a'e'q=\bar{c}'$. It is easily seen that $J(\bar{c}')=\Sigma(a'e')$.

REMARK 2. Theorems 3 and 4 give other conditions for nil $X \le 1$, conil $X \le 1$ respectively, namely whenever some combination of factors in the factorizations of c, c' is null-homotopic.

REFERENCES

- 1. I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math. 5 (1961), 99-129.
- 2. I. Berstein and P. J. Hilton, On suspensions and comultiplications, Topology 2 (1963), 73-82.
- 3. T. Ganea, P. J. Hilton and F. P. Peterson, On the homotopy-commutativity of loop-spaces and suspension, Topology 1(1962), 133-141.
 - 4. P. J. Hilton, Homotopy theory and duality, Gordon and Breach, New York, 1965.

University of Alberta