
A DECOMPOSITION RELATIVE TO CONVEX SETS

M. Z. NASHED

1. The purpose of this note is to prove a decomposition theorem

which asserts that, given a closed convex set C in a Hilbert space 77,

each element uEH can be uniquely decomposed as the sum of an

element xEH and the closest-point projection of x on C. Moreover,

x depends continuously on u and can be determined by an iterative

procedure. We also prove a theorem on the solution by iteration of

monotone operator equations.

2. In what follows, H will denote a real or a complex Hilbert space

with inner product (u, v). Recall that an operator T: D—>H is called

monotonic on a domain DEH if for all u, vED, Re(w— v, Tu — Tv)^0;

T is called strongly monotonic if the zero in this inequality is replaced

by m\\u— v\\2, where m is some positive number. For the original con-

tributions to the theory of monotone operators as well as for a survey

of related literature and applications to differential and integral

equations, see for instance [l], [2], [3], [5], [6J. Let T: H—>H be a

continuous monotone operator. Then the equation x + Tx=y has a

unique solution for each yEH and the solution depends continuously

on y (see [3]). The monotonicity hypothesis can be weakened. The

following theorem is due to Browder [l, Theorem 4].

Theorem 1. Let G: 77—>77 be a continuous mapping such that for

all u, vEH,

(1) Re(c7w — Gv, u — v) ^ w(max{||«||, ||i>||})||*< — »||2,

where mit) is a positive nonincreasing function of t such that

/CO

m(l)dt = + oo.

Then G is one-to-one, onto, and its inverse is continuous.

We now prove

Theorem 2. Let Q be an operator (not necessarily linear) from 77

into 77 with the property that Qu =8 if and only if u=d. Let G: H-+H

satisfy the conditions

(3) \\QGu - QGv\\ =~ il7(max{||M||, ||»||})||m - »||
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and

(4) Re(QGu - QGv, u - v) ^ w(max{||«||, ||»||})||« - v\\2,

where m(t) is a positive nonincreasing/unction such that (2) and (5)

hold and M(t) is a positive nondecreasing /unction. Let

(5) r = 2 sur}{f.tm(t) ^ \\QG0\\} < <*>,

let fi be any number in the range1

0 < fi < m2(r)/M2(r),

and let a and b be the (positive) roots o/ the equation

M2(r)a2 - 2m(r)a + fi = 0.

Then starting with the initial approximation Xo=0, the iterative process

(6) x„+i = xn — anQGxn,       n = 0, 1, • • ■ ,

where a^an^b, converges to the unique solution x* o/ Gx=0 and

\\x„ - x*\\ :g |(1 - fi)n'2r.

Proof. The existence and uniqueness of the solution follow from

Theorem   1.

From Schwarz's inequality we get

\\QGx - QG0\\ ||*|| ^ Re(x, QGx - QG6) ̂  w(||x||)||*||2

and hence

\\QGx\\ ^ \\QGx - QG6\\ - \\QG6\\ ^ m (JM|)||*|| - \\QG&\\.
Thus

«(lkll)ll«*ll ^ llec»ll-
Let r be as defined in (5). Then ||x* | ^r/2. Now consider the itera-

tion (6). Taking xo=0 we get ||je*—ar0|| 1kr/2. We shall show by induc-

tion that for an in a certain range, all the iterates will lie in ||x—x*||

^r/2. Assume that Xi, • • • , xn satisfy \\x — x*\\ ^r/2. Then

\\xn+1 — x*\\   ^ [l — 2aKm(max{||xn\\, \\x*\\})

+ a„M (max{\\xn\\,\\x*\\})]\\xn — x*\\

g [1 - 2anm(r) + alM\r)]\\xn - x*\\\

Thus if there exists a fi, 0<fi<l, such that

1 Note that (3) and (4) imply m{t) £M(t); hence 0<1.
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(7) 1 - 2anmir) + anM\r) g 1 - fi

for all n, then xn+iESid, r) and

||*n+i - x*\\2 £ (1 - fi)n+1\\xo - x*\\2 g (1 - /?)"+V2/4.

Hence by induction xnES(x*, r/2) for all n. To complete the proof,

note that (7) holds under the assumptions of the theorem.

Remark 1. Results analogous to Theorems 1 and 2 may be stated

for equations of the type

(8) x + XTx = y

where T is a mapping from 77 into 77, y is a fixed element in 77 and X

is a scalar. For example, if we require that \T he monotonic and con-

tinuous, then the operator G defined by Gx — x+\Tx— y is continuous

and strongly monotonic since for any u, vEH,

Re {Gu — Gv, u — v) =; \\u — v\\2.

Under these conditions, (8) has a unique solution for each y.

3. A decomposition theorem. Let C be a closed convex set in a Hil-

bert space H and let P denote the "projection" operator on C. This is the

operator which assigns to each xEH its closest point PxEC, i.e.,

\\Px-x\\ =inf{[|y-*||:yec}.

It is well known that P exists and is single-valued (e.g., [4]). P is

also called the closest-point map on C. We shall show in Theorem 3

that each wG77can be uniquely decomposed as the sum of an element

xEH and its projection PxEC; moreover x depends continuously on

u and can be determined by an iterative process. We first prove the

following.

Lemma. The closest-point map P on a closed convex set C in a Hilbert

space H is monotonic. P is not strongly monotonic if C^H.

Proof. It is easy to show that a point zEC is the closest point to

y EC if and only if

(9) Re (* - z, z - y) ^ 0    for all x E C.

Note that x, = tx + il-t)zECfor 0^/gl and thus ||y-x(|[2-||y-z||2

^0. Expansion of the left side of this inequality leads to (9). Thus for

any x,y EH we have Re(x—Px,Px — Py)^Oand ReiPy—y,Px—Py)

SiO. Adding terms we get Re(x—y— iPx—Py), Px—Py) = 0. Thus

(10) Re ix - y,Px- Py) ^ \\Px - Py\\2 ^ 0,
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which proves the monotonicity of P.

To prove the second part of the lemma, suppose C^H and choose

x E C. Let y = 2x - Px. Then for all z E C,

||*- p*|| ^ ||* - i(P* + *)||

or

\\y — Px\\ ^ ||y — z||.

Hence Py=Px and

Re (x - y, Px - Py) = 0.

Thus, if P is strongly monotonic,

(11) Re (x - y, Px - Py) ^ m\\x - y\\2,        m > 0,

we must have y = x. This implies x = Px. But this is a contradiction

since xEC-

Theorem. 3. Let C be a closed convex set in H. For each uEH there

exists a unique xEH such that u — x is the point in C closest to x, and x

depends continuously on u. Furthermore, i/ a and b are the roots 0/ the

equation a2— a+q = 0, where 0<q<l/2, then the sequence

(12) Xn+i = (1 — an)xn + a„(u — Pxn), n = 0, 1, • • • ,

where a^an^b, converges to x starting from an arbitrary initial ap-

proximation xoEH.

Proof. Consider the equation x+Px = u, where P is the closest-

point map on C and uEH. By the lemma, P is monotonic on H.

Furthermore, we know that P is continuous and distance shrinking:

||P*i — P*a|| = ||*i — *2||    for any *1; *2 E H.

(This also follows from inequality (10).) Thus the first part of the

theorem follows from Theorem 1 where G = I+P and m = 1. This part

of the theorem also follows directly from a simple argument based on

the contraction principle applied to the mapping T\ = (l— \)I

+\(u—P), where 0<X<l/2. Indeed for X?^0, every fixed point of

T\ is a solution of the equation x+Px = u and conversely. An easy

computation shows that Px is a strict contraction for 0<X<l/2. The

second part follows as a special case of Theorem 2 by noting that in

this case Gx=x+Px — u, Q = I, m = l, and Afg2.

Remark 2. In the iteration (12), we have tacitly assumed that we

can constructively "project" points on C. Since this can be usually

done only for some classes of convex sets, our procedure is not com-
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pletely constructive. See [7], [8] for some aspects of approximating

the closest-point map.

Remark 3. It is known (e.g., [4]) that the closest-point map exists

and is single-valued for every closed convex set in a strictly convex

normed linear space if and only if the space is reflexive. In view of

this, it may be interesting to determine whether one can obtain a

characterization of strictly convex reflexive normed linear spaces in

terms of the convergence property stated in Theorem 3.

Note that it is possible to give a simple expression for the de-

composition valid in any strictly convex normed space, namely,

x = u — Piu/2). To show that this is the desired x, one need only show

that P(x) =P(u/2), which result is implicit in the proof of the second

part of the Lemma.

References

1. F. E. Browder, On the solvability of nonlinear functional equations, Duke Math.

J. 30 (1963), 557-566.
2. -, Nonlinear boundary value problems, pp. 24-49, Proc. Sympos. Appl.

Math. Vol. 17, Amer. Math. Soc, Providence, R. I., 1965.

3. C. L. Dolph and G. J. Minty, "On nonlinear integral equations of the Hammer-

stein type" in Nonlinear integral equations, edited by P. M. Anselone, Univ. of Wis-

consin Press, Madison, 1964.

4. R. R. Phelps, Uniqueness of the Hahn-Banach extension and unique best ap-

proximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.

5. E. M. Zarantonello, Solving functional equations by contractive averaging, Tech.

Summary Rep. 160, Math. Research Ctr., U. S. Army, 1960.

6. -, The closure of the numerical range contains the spectrum, Pacific J. Math.

22 (1967).
7. F. R. Deutsch and P. H. Maserick, Applications of the Hahn-Banach theorem in

approximation theory, SIAM Rev. 9 (1967), 513-530.

8. R. E. Holmes, Approximating best approximations, Nieuw Arch. Wisk. (3) 14

(1966), 106-113.

Georgia Institute of Technology


