AN ISOMETRY OF HP SPACES

NORMAN J. WEISS¹

1. Introduction. In this note, we establish an isometry between $H^p(D)$ and $H^p(\mathfrak{D})$, where D is a generalized half-plane holomorphically equivalent to the bounded symmetric domain \mathfrak{D} . Our result is a direct generalization of one that is well known when D is the upper half-plane and \mathfrak{D} the unit disk [2, p. 130], in which case $H^p(\mathfrak{D}) = \pi^{1/p}(1+z)^{2/p}H^p(D)$ in a sense which will be made clear. It is also an extension of a theorem of Koranyi [3, p. 344], which gives the desired result in the case p=2.

We begin with a brief recapitulation of the notation and some relevant results of the papers of Koranyi [3] and Stein [4]. $D = \{(z_1, z_2) \in V_1 \times V_2 \colon \text{Im } z_1 - \Phi(z_2, z_2) \in \Omega\}$, where V_1 and V_2 are complex vector spaces of dimension n_1 and n_2 ; V_1 has a real form, Re V_1 ; $\Omega \subset \text{Re } V_1$ is a domain of positivity; and Φ is a hermitian bilinear form on $V_2 \times V_2$ with respect to Re V_1 such that $\Phi_1(z_1, z_2) \in \bar{\Omega}$, $z_2 \in V_2$. The distinguished boundary of D is $B = \{(z_1, z_2) \colon \text{Im } z_1 - \Phi(z_2, z_2) = 0\}$; B carries a natural measure, $d\beta$. There is a generalized Cayley transformation, $c \colon \mathfrak{D} \to D$. The distinguished boundary of \mathfrak{D} is denoted by \mathfrak{B} , and carries a natural measure $d\mu$. Notice that we do not preclude the possibility that $V_2 = \{0\}$; in this case, D is a tube domain over the cone Ω . The spaces $H^p(D)$ and $H^p(\mathfrak{D})$ consist of all holomorphic functions on D (resp. \mathfrak{D}) satisfying:

$$\sup_{t \in \Omega} \int_{B} |f(u+(it,0))|^{p} d\beta(u) < \infty$$

$$\left(\text{resp.} \sup_{r < 1} \int_{\mathfrak{G}} |f(rv)|^{p} d\mu(v) < \infty\right), \quad p < \infty;$$

f bounded, $p = \infty$. It is shown in [3] and [4] that if $f \in H^p(D)$, $0 , then <math>f_t(u) = f(u + (it, 0))$ converges in $L^p(B)$ as $t \to 0$ in Ω to a boundary function, denoted f(u). Moreover, $f_t(u) \to f(u)$ a.e. on B if $t \to 0$ in Ω restrictedly, i.e., without coming too close to the boundary of Ω .

Finally, there is a Szegö kernel, $S_z(\zeta)$ defined for $z, \zeta \in D$ such that if $f \in H^2(D)$ then $f(z) = \int_B S_z(u) f(u) d\beta(u)$, and a Poisson kernel, $P_z(\zeta) = |S_z(\zeta)|^2 / S_z(z)$ such that if $f \in H^p(D)$, then $f(z) = \int_B P_z(u) f(u) du$, $1 \le p \le \infty$.

Received by the editors June 12, 1967.

¹ Partially supported by Air Force Contract AF 49638-1529.

The author wishes to thank Professor E. M. Stein for his encouragement and valuable suggestions.

2. The isometry.

Definition. Let $f \in H^p(D)$, $0 . Then <math>Tf: \mathfrak{D} \to \mathbb{C}$ is given by

$$Tf(w) = S_{ie}(ie)^{1/p}S_{ie}(cw)^{-2/p}f(cw).$$

Notice that since S_{ie} does not vanish on B, T can be extended to take the $L^p(B)$ boundary value of f onto a function defined on $c^{-1}(B)$, and hence almost everywhere on \mathfrak{B} . We denote this function also by Tf.

THEOREM. T is an isometry from $H^p(D)$ onto $H^p(\mathfrak{D})$.

(The isometry is one of Banach spaces in the case $1 \le p \le \infty$. For 0 , <math>T preserves the metric $\rho(f, g) = \int_B |f(u) - g(u)|^p d\beta(u)$ [resp. $\int_{\mathfrak{B}} |f(v) - g(v)|^p d\mu(v)$].)

Since the theorem is trivial for $p = \infty$, we assume from here on that $p < \infty$. The main argument of the theorem is contained in the following:

LEMMA. Let $f \in H^p(D)$ and set $F(z) = f(z)S_{ie}(z)^{-2/p}$. Let $F(u) = f(u)S_{ie}(u)^{-2/p}$ be the boundary function defined almost everywhere on B. Then

$$|F(z)|^p \leq \int_{\mathbb{R}} |F(u)|^p P_z(u) d\beta(u).$$

Proof. We set

$$F_{\epsilon}(z) = F_{\epsilon}(z_1, z_2) = F(z_1, z_2) S_{ie}(\epsilon z_1, \epsilon^{1/2} z_2)^{2/p} S_{ie}(0)^{-2/p},$$

and notice that F_{ϵ} has a natural extension to a function defined a.e. on B, which we also call F_{ϵ} . It is immediate that $F_{\epsilon}(z) \rightarrow F(z)$ as $\epsilon \rightarrow 0$.

The Szegö kernel on D is given in terms of the norm function N on the tube domain T_{Ω} as follows [3, p. 338]:

$$S_{\zeta_1,\zeta_2}(z_1,z_2) = \left[N(-i(z_1-\overline{\zeta}_1)-2\Phi(z_2,\zeta_2))\right]^{-(n_1+n_2)/n_1}.$$

Therefore, for $\epsilon < 1$,

$$| S_{ie}(\epsilon z_1, \epsilon^{1/2} z_2) | = | N(1 - i\epsilon z_1) |^{-(n_1 + n_2)/n_1}$$

$$\leq | N(\epsilon - i\epsilon z_1) |^{-(n_1 + n_2)/n_1} = \epsilon^{-(n_1 + n_2)} | S_{ie}(z_1, z_2) | ,$$

where the inequality follows from [5, Lemma 6.4] if we diagonalize Im z_1 , which lies in Ω .

We thus have $|F_{\epsilon}(z)| \leq \epsilon^{-2(n_1+n_2)/p} |f(z)|$; in particular, $F_{\epsilon} \in H^p(D)$ for every ϵ .

But if g is any function in $H^p(D)$, then

(1)
$$|g(z)|^p \leq \int_{\mathbb{R}} |g(u)|^p P_z(u) d\beta(u).$$

This is clear if $p \ge 1$, since g is then the Poisson integral of its boundary value. And it is not hard to verify for arbitrary p > 0. Briefly, one sets $g_{\eta}(z_1, z_2) = g(z_1 + i\eta e, z_2)$, noticing that g_{η} is then bounded, and considers $\tilde{g}_{\eta}(w) = g_{\eta}(cw) \in H^{\infty}(\mathfrak{D})$. It follows quickly by a method of Bochner [1] for dealing with H^p functions on circular domains that $\left| \tilde{g}_{\eta}(w) \right|^p \le \int_{\mathfrak{B}} \left| \tilde{g}_{\eta}(v) \right|^p \mathcal{O}_w(v) d\mu(v)$, where \mathfrak{O} is the Poisson kernel on \mathfrak{D} . But

$$\int_{\mathfrak{B}} |\tilde{g}_{\eta}(v)|^{p} \mathcal{O}_{w}(v) d\mu(v) = \int_{\mathfrak{B}} |g_{\eta}(u)|^{p} P_{cw}(u) d\beta(u)$$

[3, 4.1 and 4.3], and so the desired result follows if we let $\eta \rightarrow 0$ and recall that $g_{\eta} \rightarrow g$ in the $L^{p}(B)$ metric.

Finally, we notice that $|S_{ie}(\epsilon u_1, \epsilon^{1/2}u_2)| \leq S_{ie}(0)$, and that $|S_{ie}(u)|$ and $|S_{\epsilon}(u)|$ are comparable when $z \in D$ is fixed. Thus

$$\begin{aligned} \left| F_{\epsilon}(u) \right|^{p} P_{s}(u) & \leq A \left| F(u) \right|^{p} P_{s}(u) \\ &= A S_{s}(z)^{-1} \left| f(u) \right|^{p} \left| S_{i\epsilon}(u) \right|^{-2} \left| S_{s}(u) \right|^{2} \leq A A_{s} \left| f(u) \right|^{p}. \end{aligned}$$

If we now set $g = F_{\epsilon}$ in (1) and let $\epsilon \rightarrow 0$, we can apply the dominated convergence theorem to the RHS, completing the proof of the lemma.

To prove that T is an isometry from $H^p(D)$ into $H^p(\mathfrak{D})$ is now routine. We have

$$|Tf(w)|^p = S_{ie}(ie) |F(cw)|^p \le S_{ie}(ie) \int_B |F(u)|^p P_{cw}(u) d\beta(u)$$

$$= \int_{\mathfrak{G}} |Tf(v)|^p \mathcal{O}_w(v) d\mu(v).$$

Since the Poisson integral is a convolution-type operator on \mathfrak{D} [3, p. 344], it follows that $Tf \in H^p(\mathfrak{D})$ since $Tf(v) \in L^p(\mathfrak{G})$. Moreover,

$$\int_{\mathfrak{G}} |Tf(v)|^{p} d\mu(v) = S_{ie}(ie) \int_{\mathfrak{G}} |f(cv)|^{p} |S_{ie}(cv)|^{-2} d\mu(v)$$

$$= \int_{\mathfrak{G}} |f(cv)|^{p} P_{ie}(cv)^{-1} d\mu(v) = \int_{B} |f(u)|^{p} d\beta(u),$$

which proves that T is an isometry.

We conclude the proof of the theorem by showing that the range of T includes the dense subset of $H^p(\mathfrak{D})$ consisting of functions h which

1086 N. J. WEISS

are holomorphic on \mathfrak{D} and continuous on $\overline{\mathfrak{D}}$. In fact, if we set $f(z) = h(c^{-1}z)S_{ie}(z)^{2/p}S_{ie}(ie)^{-1/p}$, then h = Tf, while f is the product of a bounded function and $S_{ie}(z)^{2/p} \in H^p(D)$.

REFERENCES

- 1. S. Bochner, Classes of holomorphic functions of several variables on circular domains, Proc. Nat. Acad. Sci. U.S.A. 46(1960), 721-723.
- 2. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- 3. A. Koranyi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332-350.
- 4. E. M. Stein, Note on the boundary values of holomorphic functions, Ann. of Math. (2) 82 (1965), 351-353.
- 5. N. J. Weiss, Almost everywhere convergence of Poisson integrals on tube domains over cones, Trans. Amer. Math. Soc. 129 (1967), 283-308.

PRINCETON UNIVERSITY