AN ISOMETRY OF Hr SPACES
NORMAN J. WEIss!

1. Introduction. In this note, we establish an isometry between
H?»(D) and H?(D), where D is a generalized half-plane holomorphi-
cally equivalent to the bounded symmetric domain D. Our result is a
direct generalization of one that is well known when D is the upper
half-plane and ® the unit disk [2, p. 130], in which case H?(D)
=ql/7(142)22H?(D) in a sense which will be made clear. It is also an
extension of a theorem of Koranyi [3, p. 344], which gives the desired
result in the case p=2.

We begin with a brief recapitulation of the notation and some
relevant results of the papers of Koranyi [3] and Stein [4]. D
= {(zl, 2) EViX Va: Im 2 —P(22, 20) EQ}, where V; and V; are com-
plex vector spaces of dimension #; and #n,; V; has a real form, Re V7i;
QCRe V; is a domain of positivity; and ® is a hermitian bilinear form
on VXV, with respect to Re V; such that ®,(z, ) €8, 22E V,. The
distinguished boundary of D is B= { (21, 2,): Im 2, —®(z, %) =0}; B
carries a natural measure, dB. There is a generalized Cayley transfor-
mation, ¢: D—D. The distinguished boundary of D is denoted by ®,
and carries a natural measure du. Notice that we do not preclude the
possibility that V;={0}; in this case, D is a tube domain over the
cone . The spaces H?(D) and H?(D) consist of all holomorphic func-
tions on D (resp. D) satisfying:

sup fB | fu + (it, 0)) |dB(u) <

teQ
(resp. supf | £(rv) |Pdp() < °°>, p< o
r<1J®

f bounded, p= o. It is shown in [3] and [4] that if fEH?(D),
0<p < =, then fi(u) =f(u+ (it, 0)) converges in L?(B) as t—0 in Q to
a boundary function, denoted f(x). Moreover, f:(u)—f(u) a.e. on B if
t—0 in Q restrictedly, i.e., without coming too close to the boundary
of Q.

Finally, there is a Szegd kernel, S,({) defined for 2, { €D such that
if fEH*(D) then f(z)=[p S.(u)f(u)dB(x), and a Poisson kernel,
P.(¢) = | S.(¢)| 2/S.(2) such thatif fE H?(D), thenf(z) = [ P, (u)f (w)du,
1Sp=s .
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2. The isometry.
DEFINITION. Let fEH?(D), 0<p =< ». Then Tf: D—C is given by

Tf(w) = Sic(i€)!/?S0(cw)~2/7f (cw).

Notice that since S;. does not vanish on B, T can be extended to
take the L?(B) boundary value of f onto a function defined on ¢~!(B),
and hence almost everywhere on &. We denote this function also by

Tf.
THEOREM. T is an isometry from H?(D) onto H?(D).

(The isometry is one of Banach spaces in the case 1=p =< «. For
0<p<1, T preserves the metric p(f, g)=/» |f(u)—g(u)|i°dﬁ(u)
[resp. [a |£(0) —¢@)| 7du(v)1.)

Since the theorem is trivial for p = «, we assume from here on that
p < . The main argument of the theorem is contained in the follow-

ing:

LEMMA. Let fEH?P(D) and set F(z)=f(2)Si(2)7%?P. Let F(u)
=f(1)Si(u)~2? be the boundary function defined almost everywhere on
B. Then

[F@ ] = [ | R P,
B
Proor. We set
F.(Z) = Fc(zl, Zz) = F(Zl, Zz)Sic(ézl, 61/222)2/pS;e(0)_2/p,

and notice that F, has a natural extension to a function deﬁnedfa.e.
on B, which we also call F.. It is immediate that F.(z)— F(2) as e—0.

The Szegé kernel on D is given in terms of the norm function NV on
the tube domain T'q as follows [3, p. 338]:

. - —(n1+n2) /n
Sty.22(21, %) = [N(—1(21 —§1) — 28(3, 3'2))] v "\
Therefore, for e<1,
|S“(621, e1’222)| — | N(l _ iezl) l—(n1+n3)/m
= | N(e — tezy) I-(”l+”’)/"l = e—(”H-M) ‘ Sie(21, 22) | ’

where the inequality follows from [5, Lemma 6.4] if we diagonalize
Im z;, which lies in Q.

We thus have | F.(z)| e 2m+ip|f(z)| ; in particular, F.EH?(D)
for every e.
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But if g is any function in H?(D), then
0 4@l = [ | e p.cudstw).
B

This is clear if p=1, since g is then the Poisson integral of its bound-
ary value. And it is not hard to verify for arbitrary p>0. Briefly, one
sets g,(21, 2) =g(z1+1ine, ), noticing that g, is then bounded, and
considers g,(w) =g,(cw) EH*(D). It follows quickly by a method of
Bochner [1] for dealing with H? functions on circular domains that
| 2,(w)|?< fa | 8.(%)| P®u(v)du(v), where @ is the Poisson kernel on .
But

[ 18 Pecaane = [ |a0 |Putdsw

[3, 4.1 and 4.3], and so the desired result follows if we let 7—0 and
recall that g,—g in the L?(B) metric.

Finally, we notice that lSie(eul, 61/2u2)l =< S:(0), and that lS,-,(u)I
and | S,(u)[ are comparable when z&ED is fixed. Thus

| Fu(w) |?Py(u) < A| F(w) |?P.(w)

= 45,07 f@) [7] Suelw) [72] S.w) [* < A4, fC0) |7,

If we now set g= F.in (1) and let e—0, we can apply the dominated

convergence theorem to the RHS, completing the proof of the lemma.

To prove that T is an isometry from H?(D) into H?(D) is now
routine. We have

| Tf(w) |» = Si(ie) | F(cw) |P < Siu(ie) f | F(u) |?Pow(u)dB(u)
B

- f 1 77 [ @uaue).

Since the Poisson integral is a convolution-type operator on D [3,
p. 344], it follows that TfE H?(D) since Tf(v) EL?(®). Moreover,

[ 1250 paute) = Sutie) [ 1560 |o] Suder) =2duce)
® ®

= [ 1t loPuteorduts) = [ 11t lraste,
® B

which proves that T is an isometry.
We conclude the proof of the theorem by showing that the range of
T includes the dense subset of H?(D) consisting of functions # which
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are holomorphic on D and continuous on D. In fact, if we set f(z)
=h(c"'2)S;.(2)2?S;.(1e)~1/?, then h=Tf, while f is the product of a
bounded function and S;,(z)*?EH?(D).
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