WEAKLY BOUNDED SYSTEMS OF
DIFFERENTIAL EQUATIONS

THOMAS G. HALLAM

1. Introduction. The differential equation
1) o =f{t, x) (' =d/d)

will be considered with f(¢, x) continuous on IXR* (I ={t:0<t< o |,
R~ is Euclidean n-space) and f(¢, 0) =0 for ¢ in I. Furthermore, it will
be assumed that (1) has a unique solution to the initial value problem
and, thus, that the solutions depend continuously upon the initial
data. The solution of (1) which passes through the point (¢, xo) will
be denoted by x(¢; £y, x0). We will let le designate any norm of the
n-vector ¥ and | 4| designate any norm of the matrix A4 which is
consistent with the vector norm; that is, | Ax| <| 4| |#|.

An examination of the concepts of the stability [1, p. 56, [3, p. 31],
[9, p. 26]), boundedness [9, p. 36], and practical stability [3, p. 121];
see also [7], leads to the following remark. Essentially, the above
concepts are dependent upon two bounds: @, the bound for the initial
condition and B, the bound for the solution after the initial time. In
order for (1) to possess the stability property, § is preassigned and
the existence of a suitable & must be demonstrated. For the bounded-
ness definitions, the roles of & and B are interchanged; that is, a is
given and the bound on the solution § must be determined. In the
practical stability, both & and 8 are preassigned.

The purpose of this note is to discuss some consequences of the
following question: In the general theory of stability, what is the
role of the existence of an @ >0 and a >0 such that if | xo| <e, then
x(t; to, x0) is defined for t=t, and Ix(t; to, xo)[ < for t=¢,? Although
this is a relatively weak property for the solutions of (1) to possess
(when compared with the above stability concepts), in certain in-
stances it is quite useful. The definitions used in this article will now
be given.

DerFINITION 1. Equation (1) will be called weakly bounded if for
each ¢, in I there exists an a =a(t;) >0 and a B=8(t,) >0, a =B, such
that whenever Ixol <a then x(¢; to, xo) is defined and |x(t; to, xo)l <B
for all £=¢,. If, in addition, @ and B are constants (i.e. independent of
to) then (1) will be called uniformly weakly bounded.

DEFINITION 2. Equation (1) will be called weakly contractive if there
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exist constants >0 and >0, &>, and a function T =T'(¢,) >0 for
all ¢ in I, such that if |xo| <a then x(¢; to, x0) exists for all £=¢, and
Ix(t; to, xo)l <Bforall t=¢+7T. If T is independent of ¢, then (1) will
be called uniformly weakly contractive.

It is clear that the equiboundedness of the solutions of (1), the
stability of the zero solution of (1) or the practical stability of (1)
implies that Equation (1) is weakly bounded. The following example
shows that the weak boundedness of a system of differential equations
is a different concept from boundedness and stability.

ExampLE 1. The differential equation

2) 2 = x(x + 1)2(x — 1)

is (uniformly) weakly bounded for any a, 0 <a <1, and 8, 1 £8. How-
ever, the solutions of (2) are not bounded, nor is the zero solution of
(2) stable.

The next example is another illustration of weak boundedness and
has applications in the asymptotic behavior of solutions of differential
equations (see [2], [6]).

ExampLE 2. Consider the differential equation

3) ' = a(t)a, x =0, te1,

where r>1, a(f) is nonnegative, continuous, and [* a(f)dt< . The
solutions of Equation (3) may be written as

x(l) = [x(to)l" + {1 - r)ftta(s)ds:l”u_t)

The equation (3) is uniformly weakly bounded since, if x(¢) <«
= [2y]¥0-7 then x(f) <B =717, where y = (r —1) [ a(t)dt.

REMARRK. If equation (1) is weakly contractive, then equation (1)
is weakly bounded. This result is a consequence of the assumption
that (1) has a unique solution to the initial value problem.

2. Weak boundedness in linear systems. We will consider the
linear homogeneous system of differential equations

O] ¥ = A@)x
where A (¢) is a continuous # X7 matrix defined on I.

TrEOREM 1. For Equation (4), the following conditions are equivalent:
(i) Equation (4) is (uniformly) weakly bounded.

(i) The solutions of (4) are (uniformly) bounded.

(iii) The solutions of (4) are (umiformly) stable.
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Proor. If X (¢) is a fundamental matrix of solutions of (4), then
x(t; to, x0) = X (£) X~1(¢9)x0. As a consequence of this representation, if
(4) is weakly bounded for the bounds « (on the initial condition) and
B (on the solution), then for any solution x(f; fo, %), [x(t; to, xo)l
éﬁa—‘l xol. Using the fact that (uniform) boundedness of the solu-
tions of (4) is equivalent to (uniform) equiboundedness [9, p. 37], we
obtain (i)—(ii). The equivalence (ii)«>(iii) is well known, [1, p. 54],
[9, p. 34].

THEOREM 2. For the linear system (4), the following conditions are
equivalent:

(i) Equation (4) 1s (uniformly) weakly contractive.

(it) The solutions of (4) are (uniformly) ultimately bounded.

(iii)  The solutions of (4) are (quasi-uniformly) asymplotically stable.

Proor. The proof will consist of showing (i) —(ii), since it is known
that (i)« (iii) [9, p. 45]. Let (4) be weakly contractive; suppose a, 8,
and T play the same role as in Definition 2. It will be shown that the
solutions of (4) are ultimately bounded for the bound 8.

Let X(¢) be a fundamental matrix of solutions of (4); then

| 2t to, x0) | = | XOX ' t)xo| < 8,
provided that |x0| <a and ¢=ty+T(¢). Thus, for any £ in I, if
t=ty+ T (t), then
| X X~'(to)| < Bal.

Suppose x(¢; to, xo) is any solution of (4) with IxO‘ <ayp; then

| x(t; b0, %) | < | XWX2(t0) | | %] < Ba'ao
when t=ty+T(t). Denoting by ty=t,+ T(f) and x1=x(t; to, x0), We
observe that the point (£, x;) on the trajectory x(¢; fo, %o) is such that
| 1| <Ba~la,. For each positive integer k=1, 2, - - -, we can continue
in this manner to obtain points (f, xx) on the trajectory x(¢; to, %0)
where ti = i1+ T (teo1), % =% (t; o, %), and | xe| <Bra*a.

Since B <o there exists an integer z such that f"a—"ay <f3; for such
an integer n we have

| %(; to, %0) |

Il

| (; ta—s, 2a_s) |
< | XOX(tasd) || 2|
< Braay < B,

whenever t=t,_1+T(t,_1). Therefore the solutions of (4) are ulti-
mately bounded for the bound 8.



1968] WEAKLY BOUNDED SYSTEMS OF DIFFERENTIAL EQUATIONS 1245

The “uniform” part of the theorem follows from the above proof
by observing that when T is constant then the #'s are given by
b=to+kT, k=1,2, - - -, n—1.

As a consequence of the above theorems, we observe that the
Definitions 1 and 2 define distinct concepts, since examples are known
[4], [8] for linear equations in which the corresponding types of
boundedness of stability are different.

3. Weak boundedness in nonlinear systems. The next result,
valid for periodic systems, is analogous to known results for bounded-
ness [8] and stability [5]. The proof will be omitted because it pro-
ceeds in the classical manner.

THEOREM 3. Let f(t4w, x) =f(t, x) for some w<0 and for all ¢t and x,
Equation (1) is weakly bounded if and only if (1) is uniformly weakly
bounded.

Some sufficient conditions will be given which determine the weak
boundedness of the solutions of a nonlinear system. Since Liapunov
functions have been used to determine boundedness and stability of
nonlinear systems, it seems logical that they would also apply in the
instance of weak boundedness. This is indeed the case, as we shall see
below.

As a scalar comparison differential equation, consider

(5) y =g, )

where g(t, y) is continuous on IXR*, R+*={y|0<y<w}, and
g(t, 0)=0 for t&1. The Liapunov function V(¢, x) will be required to
satisfy the following condition:

(6) V(¢ x) is a continuous function locally Lipschitz in x which is
defined for t€1 and 0= |x| <  with V(, 0)=0 for all tE1; V(t, x)
ga(l x|) where a(r) is a continuous increasing function of r for r =0
with lim,,, a(?) = «. If

V'(¢t, x) = lim sup V@t + h,x+ h, 11, x)) — V(E, 2)|/h,

then V'=g(t, V).
The proofs of the following theorems proceed in the classical man-
ner and for this reason will be omitted.

THEOREM 4. Let condition (6) be satisfied. If the equation (5) is
weakly bounded, then equation (1) is weakly bounded.

THEOREM 5. Let condition (6) be satisfied; furthermore, let V(t, x)
gb(lxl) where b(r) is a continuous increasing function of r for r=0.



1246 T. G. HALLAM

If equation (5) is uniformly weakly bounded, then equation (1) is uni-
formly weakly bounded.

There are analogous results for weakly contractive and uniform
weakly contractive systems which correspond to Theorem 4 and 5
respectively. As an illustration of Theorem 5 we present

ExampLE 3. For |-| denoting the Euclidean norm, let f(¢, x)
satisfy the inequality
® |16 9] = e =)

where a(t) is continuous on I, [* a(t)dt< «, and »>0. As a Liapunov
function, consider V(x)= I xl 2. then, V satisfies the differential
inequality

V' £ 2a()V0tDI2,

If >0, then the comparison differential equation associated with the
above differential inequality

(9) y’ = 2a([)y(f+1)/2

is uniformly weakly bounded. In fact, for r =<1, the solutions of (9)
are uniformly bounded; and for >1, from Example 2, we can con-
clude that (9) is uniformly weakly bounded. An application of The-
orem 5 yields the result that equation (1) subject to condition (8) is
uniformly weakly bounded.
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