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The variation of parameters formula is an important tool for the

study of both ordinary and retarded differential equations. Recently,

a nonlinear extension of this formula, due to Alekseev, has proved

useful in studying perturbations of nonlinear ordinary differential

equations. (See [l], [2], [3], and [7].) It is the purpose of this note

to show that this formula may also be extended to retarded equations,

thus generalizing the result given, for example, in [5, p. 366] for the

linear case. This allows one to extend to equations with finite lag

many of those results in [2], [3], and [7] which assume a bound on

the solutions or their "derivatives with respect to initial conditions."

We first discuss the differential-difference equation

(1) x(l)=f(t,x(t),x(t-l))

where x and / are real-valued functions. We assume that /,

(df/dx) (t, x, y), and (df/dy) (t, x, y) are continuous for / j£ 0 and all x

and y. The results to be given below can be extended to systems and

to more general functional differential equations with the use of the

Frechet derivative. (See, however, the note after Lemma 1 below.)

Let PC= {d>/(p is a piecewise continuous real-valued function on

[ — 1, 0]}. Then it is well known that for each <f>EPC and for each

to^O, there is an «>0 and a unique function x(-, to, <f>) defined on

[/0 —1, io+«] and continuous on [to, to+e] such that

x(to + 0,t0,<l>) = <b(6),       -l£0;go,

and

(dx/dt)(l, to, 4>) = x(t, to, <t>) = f(t, x(t, t0, d>), x(t - 1, to, «))

almost everywhere on [/0, fo+«]- (In general, "•" and "d/ds" will

denote two-sided derivatives except at the left or right endpoints of

a closed interval in which the function involved is differentiable,

where these symbols will denote the appropriate right- or left-hand

derivatives. We shall also have occasion to use d+/ds and d~/ds to

denote right- and left-hand derivatives.) Also, x(t, to, <p) is continuous

in <p using the topology of uniform convergence in PC. In fact a type

of weak continuity holds:
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Lemma 1. Suppose that {</>"} is a bounded sequence of functions in

PC, <j>EPC, and </>"—></> pointwise. Then for each /2^/o = 0 such that

x(t, to, (p) is defined, it is the case that for large n, x(t, to, <p") is defined

and x(s, to, <pn)—*x(s, t0, <p) uniformly for to^s^t.

Proof. It is sufficient to prove the result for t0^t^to + l. For each

TpEPC we denote by I (to, ip) the maximal interval of existence of

x(-, to, yp). Also, let I+(t0, t)=I(to, f)ni[t0, »). For tEKh, <t>)
r\I(t0, <pn), let x(/) =x(t, to, <t>) and x"(/) =x(t, t0, <pn). Then on 7+(/0, 0)

rM+(to, <pn), we have

x»(t) - x(t) = *»(0) - *(0)

+ f  [f(s, x"(s), x"(s - 1)) -f(s, x(s), x(s - l))]ds.

Since x(s — l, h,yp) =\[/(s—l) for t0^s^t0 + l, we can use the bounded-

ness of df/dx and df/dy on compact sets to obtain a bound of the form

| x"(t) - x(t) |   g  | <b"(0) - d>(0) |   + |    M | x"(s) - x(s) | ds

t-x

+ f     L\r(s)-<t>(s)\ds.

The bounded convergence of <pn to <p and Gronwall's inequality can

then be used to complete the proof.

Note. This result is not true for all functional differential equations

with Lipschitz continuous right-hand sides. For instance, consider the

equation x(t) =sup_is9£o |x(/+0)|. Let0"(0)=O for — 1^0Sj — 1/w,

0"(0) = l-|2w0 + l|, -l/w^0^O. Then |0n(0)|^l, <£"(0)->O for
-1^0gO, butx(/, 0, 0")=/, 0g/^l/2 for w = l, 2, ■ • • .

We must now discuss the "derivative with respect to initial condi-

tions" of solutions of (1). Let C— {4>\<pEPC,<p continuous on [ — 1,0]}.

Lemma 2. Suppose <p, <pEC. Then for each s^O, and each t in I(s, <p)

except t = s, dx(t, s, <p)/ds is defined. Also, lim„_s+ (u, s, 4>)dx/ds exists

and if \p(t) =\imu^.t+dx(u, s,<p)/dsfor tEI(s,<j>), then \p satisfies the varia-

tional equation

i(t) = — (t, x(t, s, 4>), x(t - 1, s, <p)),p(t)
ox

(2)
df

+ — (t, x(t, s, <p), x(t - 1, s, <b))+(t - 1)
dy
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with initial condition

+(s + 0) = - 4,(9),        ~ 1 ̂  8 < 0,       +(s) = - f(s, *(0), *(-D).

Proof. This is, of course, an extension of the usual result for ordi-

nary differential equations, and the proof proceeds as in that special

case. For small \h\, h^O, define 77(t, s, h) by

v(l, s, h) = (l/h)[x(t, s + h,<b) - x(t, s, 4,)],      tEI(s + h, d>) P> I(s, d>).

ForA<0,

y(t, s, h) = — [d>(t - s - h) - d>(t - s)],       s—l^t^s+h,
h

ri(t, s, h) = •—   <f>(0) +  I     f(u, x(u, s + h, <b), x(u — 1, s + h, <t>))du
h L J.+h

- 4,(1 - s)   ,        i + ^(^,

r,(t, s, h) = — < j    [/(«, x(w, s + h, 4>), x(u -l,s + h, 4>))

— f(u, x(u, s, d>), x(u — 1, s, 4>))]du

+   I     f(u, x(u, s + h, 4>), x(u — 1, s + h, 4>))du> ,

t E I+(s + h,4>)C\ I+(s, 4>).

Therefore,

lim ri(t, s, h) =  — 4>(t — s), s — 1 i£ t < s,
»->o-

lim v(s, s, h) = -f(s, 4>(0), *(-l)).

Also, for />5 and tEI+(s+h, 4>)r\I+(s, d>) we have that

d 1
—17(/, s,h) = — [f(t, x(t, s + h, 4>), x(t - l,s + h, <t>))
dt h

(3)

-/(*, x(t,s,4>),x(t - l,s,4>))\,

while at t = s the right-hand derivative d+n(s, s, h)/dt also satisfies this

equation.

We now proceed just as for ordinary differential equations (see

[4, pp. 25-27]). In particular, it follows from (3) that as h—*0~
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d
— t)(i, s, h)
dt

= h-1 j T— (/, x(t, s, 4>),x(t-l, s, *)) + o( | hv(t, s, h) | )J hv(t, s, h)

[df
+ \ — (t, x(t, s, <b), x(t - 1, s, <b))

\_dy

+ o(\hr,(t-l,s,k)\)~\krl(t- l,s,h)}

df
= — (t, x(t, s, <b), x(t - 1, s, <b))r)(t, s, h)

ox

+ — (t, x(t, s, <b), x(t - 1, s, <f>))v(t - 1, s, h) + o( | h | ).
dy

It now follows from known results about the theory of e-approxi-

mate solutions (see [6, pp. 14-20]) that the left-hand derivative

d~x(t, s, <p)/ds exists for tEI(s, <f>) and satisfies the conditions on \p

in the statement of the lemma. Therefore d~x(t, s, 4>)/ds is continuous

in 5 for each / in 7(5, (p) except / = 5. Thus, except at t = s, dx(t, s, <j>)/ds

is continuous and satisfies the conditions on \p in the statement of the

lemma, and the desired result follows.

At this point we need some more notation. Suppose y is a real-

valued function which is piecewise continuous on an interval [a — 1, b]

with a<b. Then for each sE [a, b] we define yeEPC by ys(9) =y(5+0).

Lemma 3. Let y(s) be continuously differentiate on [a — 1, b]. Then

for sE(a, b), dx(t, t0, y,)/ds exists and satisfies

*(t) = — (/, x(t, to, ys), x(t-\, to, y,))m
ox

df
+ — (t, x(t, t0, y,), x(t - 1, to, yM(t - 1)

dy

as a function of t for tEI+(h, y.). Also,

ds
— x(h + 8, to, y.) = y„(0) = y(s + 6),       -1 ^ 8 ^ 0.
ds

Proof. The proof is similar to, but simpler than, that of Lemma 2

and will be omitted.
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We now come to our main result. For given io = 0, <j>EPC, and

tEI+(to, <t>) we define a bounded linear functional T(t, to, d>): PC^>R

by setting T(t, t0, d>)x equal to the value at t of the solution of (2)

with initial condition ^ta~x- Also, for each real-valued function g

continuous on [0, °o) and for each t0^0 define gu„]EPC by setting

gt.0]W=°.-1=^<0.g['oi(0)=gao).

Theorem. With g as above, t0^0, andd>EClet y be the solution of

(4) y(t)=f(t,y(t),y(t-l)) + g(t)

with ytt> = 4>- Then for all t ̂  to such that

(i) y(t) is defined,
(ii) tEI(s, y>) for to^s^t, we have

y(t) - x(t, to, 4>) =   I    T(t, s, y,)gi,]ds.
J h

Proof. First assume that 4>EC. Then y,EPC for t0^s^t, and from

Lemmas 2 and 3 it follows that

d .
— x(t, u, y.) |u=, = T(t, s, y.) - y. + gM
du

while

d .
— x(t, s, yu) |u_ = T(t, s, y,)y,.
du

We therefore obtain

(d/ds)x(t, s, y,) = T(t, s, y.)[-y. + gw] + T(t, s, y,)y, = T(t, s, y,)glsl.

Integrating from s = to to s = t and using the fact that x(t, t, yt)=y(t)

proves the result in this special case. Now if <j>(£C, then choose \d>n)

with 4>nEC, 4>n—>4> uniformly. Let yn(s) denote the solution of (4)

withyl=d>n. Then x(t, t0,4>n) -yn(t)^>x(t, t0,d>) —y(t). Also, yn(s)-*y(s)

uniformly in 5 for ta — 1 ̂ s^t. Therefore T(t, s, y?)g[«]—»F(f, s, y,)gw

uniformly in 5 for to^s^t and this implies the desired result.
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