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1. Introduction. In a recent paper [6] S. Uchiyama has derived

lower bounds for

/ill     n

X 4>k(i)cke(mkx) dx,
0    I k=X

where d>k is the fcth Rademacher function, {mk} is a sequence of dis-

tinct integers, and e(mkx) =exp (2irimkx). Uchiyama's results hold

except for values of t in sets of arbitrarily small measure; these excep-

tional sets may include the values of t, near the origin, for which

<t>k(t) = 1. We find here lower bounds for

/ill     n

2~2 cke(mkx)  dx
o  I *-i

which correspond to Uchiyama's results, but for these values of t. We

have to put some conditions on the sequence {»?«}; simple examples

show that our bounds cannot hold in general.

S. Chowla [l] conjectured that, for any sequence {mk} of increas-

ing positive integers

n

(1) min   53 cos 2-wmkx < — cn112
OSl<l   4_l

for some absolute constant c>0. S. Uchiyama [6] proved that given

ra distinct integers mi, ■ ■ ■ , mn, there exists always a subset /»,,,

• ■ • , mir of mi, • ■ ■ , mn, for which

' 1 / 1 V'2
min   22 cos 2Tmj{x <-( — )    n112 = (-0.102 • • • )n112.

0SK1    ,=i 4   \ 6/

We prove here that if {mk} is an admissible sequence (for definition,

see below), then

"                               1
min   2Z cos 2wmkx <-ra"2 = (-O.^n1!2.

0gl<I   A-l 8
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2. Admissible sequences. We will say that a sequence {mk} of

positive integers is admissible provided that {mk} is strictly increas-

ing and mk—mj+mi — mp7^0 if k^j, k^p and jV/ all hold. Note that

this condition automatically holds it l = p since {mk} is strictly in-

creasing. Hence we shall assume l^p. Similarly if k = l the condition

is satisfied when j = p. There are many sequences which are admis-

sible, as the following lemma shows.

Lemma. // {mk} is a sequence of positive integers such that mk+i \ mk

^2, then {mk} is admissible.

Proof. Let mk = max(mk, mit mp, mi). Then

mk — mj + mt — mp > mk — mj — mp 'St mk — 2 max (m,j, mp) 5; 0.

If mj = max. (mk, mj, mp, mi), then the same argument shows that

mk—mj+mi — mp9^0.

Remarks. For some deep results of Erdos, Chowla and others for

similarly defined ^/.-sequences Qi = 2), see [3, pp. 76-97].

3. Theorems. We let Snix) = XX i cke(mkx), Rn= zZt-i |c*|2 and
T — Vn    I r, 14

Theorem 1. If {mk} is an admissible sequence, then

r\       ,       /   Rn   \in
(2) J J Snix) | dx = (jZTiJn)    '        n=l,2,-...

Proof. It is easy to see that

f      \Snix)\2dx  =   Rn.
J 0

Also,

/| Snix) \*dx =   I     <   ^Z ckCjei(mk — m,)x)> dx
0 J 0      \ k.i—1 I

=   I      H   \   H CkCjCicpeiimk — mj + mt — mp)x)\ dx.
J 0    k.j-l    \   l.p-l !

We break this sum into three parts:

(A) The terms with k —j give

/' 1    n     /     n "\ n      n

H\  H  \ ck\2cicpe(mi — mp)x\ dx = £) 1Z I c* I21 c< I2-
0     k-l   \ l.p^l I k—l  1=1

(B) When k^j we have some terms when k=p and j — l. These

terms give the sum Hk.i-i;k*j \ c*| 2| c}\2.
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(C) The remaining terms are given by

/2~L      \   2~1 ckCjCiCpe((mk — mj + mt — mp)x)> dx
0    k,j=X;k*j    I  l,p-l 1

where either kj^p or j^l. In fact we may take k^p and j^l for if

k^p and j = l, the corresponding integral vanishes. Thus we have

kr^j, k^ptj^l in (C); so mk—mj+mi — mp^O since {mk} is admis-

sible, and the integral vanishes. This shows that

f    \Sn(x)   \*dx=   J2   \ck\2\cl\2+      jl      \ Ck\2\ Cl\2 = 2Rn - Tn.

Holder's inequality now yields the result,

ai \2/3       p i // r1 \1/s
\Sn(x)\dx\        ̂ J       \S»(x)\*dx/lJ       \Sn(x)\'dx)

=      Rn/(2Rn-      Tn)1".

Hence

f   | Sn(x) | dx ^ RT/(2Rl - Tn)112 ^ RT/(2 - 1/n)1'2.
J 0

Note that there is an equality sign when ra= 1. Also we have

(2 - 1/n)-1'2 S \\Sn\\x/\\S„\\2 :£ 1,

where ||>Sn||p (p = l,2) denotes Lp norm of S„.

We can get a similar result for real series

n

(3)    T„(x,a) = Tn(x) = 2~1 Pk cos 2ir(mkx + ak),    pk ^ 0,    a* real.
k-X

Theorem 2. If {mk} is an admissible sequence, then

/i /   "    A1/2

(4) V '   [

-;-r~.—'      » = 1, 2, •••.
2»/s(2 - l/n)1'2

Proof. We have

C\Tn(x)\Hx=±-j:Pi
•/ 0 2   k=X

If Un(x)= S»-i {pk e(mkx+ak)}, then Fn(x)=Re Un(x). By Theo-

rem 1,
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f    | Unix) \Hx = 2 ( JZ | Pkeiak) \*\ - zZ I P*<«*) |4
J 0 \ k-l / k-l

/     n \ 2 n

=   2 I    2Z P* )     —    llPk-
\ k-l      / 1

But | rn(x)| ^ I f/„(x)| and Holder's inequality now gives

al \ 2/3
|  Tnix) | dx)

f      |   Tnix)\2dx f      |   Tnix)\2dX
J 0                                                      J 0

;> - ^-

("J    \Tnix)\Hx\ (j   \Unix)\*dx\   3

iy   2

= [(2-i/^(zP:)2/]   ^ v 2 (2-1/w)1/3'

and^(4)|is proved.

Theorem 3. // {mk} is an admissible sequence, then

(5) ,e,r-Wa-2.>-(2-./»)-(?''')'"■

Proof. Write

r„+ = max(rn, o),      r„- = — min(r„, 0).

Then

I     \Tn\dx=   f   T+dx +   f   Tirdx,
Jo Jo "0

/Tndx =   I    T/fdx -   |    Tndx = 0.
o J 0 •* 0

Hence

2 f   7\r<Z* =   f    I Tnix) I <fc.
•7 o Jo

But 7"~(x) ^ — minoaxsi T„(x). Hence
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2«.(2 -!/„)»■( ?«)"'S    />•-«*« "   "ft T-^

and the theorem is proved.

Corollary. If {mk} is an admissible sequence, then

n / 1 \-1/2 I

(6) min    £ cos ^mkx g - 2-5'2( 2-J      ra1'2 <-ra1'2.
oski     i \ ra/ 8

We now consider this minimum when {mk} is not necessarily an

admissible sequence. Let fi0 be the unique root of the equation

/, 3W2 Cos u-du = 0.
0               Ux

The value of fi0 ( = .30844 • • • ) has been calculated (cf. [2], [4]) to

fifteen places of decimal.

Theorem 4. Write

n

(7) m(n) =    min   Tn(x, 0) =    min    2~1 Pk cos 27rmkx,
Oix<X 0Sz<l    k=1

and let 0<fi<fi0, l^b< 1/(1 -fi), 0<y<l-b(l -fi). Suppose that

(8) 1 ^ mx < m2 < ■ ■ ■ ,       mk< Kkbpk        ,       k = 1, 2, • ■ • ,

where K is a constant. Then

(9) lim sup {— m(n)/ni} > 0.
n—♦«

We omit the proof which is similar to that of Theorem 3 of [2].

Remarks. A result similar to Theorem 4 can be proved for

n

min    2~1 Pk cos(2irmkx + 2wak),
0Si<1        x

provided we put a suitable condition on ak (cf. [2], [5]).

Example. Let 1^oti<ot2< ■ • ■, mk = O(k1+*),pk>0, k = l, 2, ■ ■ ■,

Pk~1 = 0(kt) for every e>0. Then the condition (8) is satisfied with

b> 1. Hence (9) holds with any number y<fi0. This extends a result

of Chowla [l, p. 131 ].
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