ON DISTRIBUTIONS WITH SUPPORT AT THE ORIGIN

LEON NOWER¹

Among the results of the L. Schwartz theory of distributions is the following

THEOREM. If α is a q-dimensional distribution whose support is the origin of \mathbb{R}^q , then α is a linear combination of the Dirac δ -distribution and some of its derivatives. [1].

It is the purpose of this paper to supply a new, sequential-theoretic, proof of this theorem. I should like to thank Professor Korevaar for suggesting this problem.

PROOF. Let $\langle \delta_N \rangle$ be a fundamental sequence of C^{∞} functions which defines δ , and such that the support of δ_N is contained in

$$I_N = \{x = \langle x_1, \cdots, x_q \rangle | -1/N < x_i < 1/N, i = 1, \cdots, q\},\$$
$$N = 1, 2, \cdots.$$

Then $\alpha_N = \alpha * \delta_N \in C^{\infty}$, the support of α_N is the same as that of δ_N , and $\alpha_N \rightarrow \alpha$ distributionally. Hence, for some multi-index $m = \langle m_1, \cdots, m_q \rangle$ there is a sequence $\langle G_N \rangle$ of C^{∞} functions with the following properties:

(a) $D^m G_N = \alpha_N$ for each N; (b) $\langle G_N \rangle$ converges to a continuous function G uniformly on compact sets (and therefore $D^m G = \alpha$); and, because I_N supports α_N , (c) $G_N(x) = 0$ if, say, $x_i < -1$, $i = 1, \dots, q$, $N = 1, 2, \dots$

Now let

$$P(x; t) = \prod_{i=1}^{q} \frac{(t_i - x_i)^{m_i - 1}}{(m_i - 1)!} \quad \text{if } x_i < t_i, i = 1, \cdots, q,$$

= 0 otherwise,

and

$$F_N(t) = \int_{-1}^{t_q} \cdots \int_{-1}^{t_1} D^m G_N(x) \cdot P(x;t) dx_1, \cdots, dx_q, \quad N = 1, 2, \cdots.$$

Integrating by parts m_i times with respect to x_i and observing that $D^r P(x; t) = 0$ if $r_i = m_i$ for some *i*, we have

Received by the editors March 20, 1967 and, in revised form, June 16, 1967.

¹ This research was supported in part by the San Diego State College Foundation.

(1)
$$F_N(t) = \sum_{0 < r \le m} (-1)^{r'} D^{m-r} G_N(x) \cdot D^{r'} P(x; t) \bigg]_{x = \langle -1, \dots, -1 \rangle}^{x = \langle t_1, \dots, t_q \rangle},$$

where $(-1)^r = \prod_{i=1}^{q} (-1)^{r_i}$ and $r' = \langle r_1 - 1, \dots, r_q - 1 \rangle$. Now, if $r \neq m$ then $D^r'P(t; t) = D^{m-r}G_N(-1, \dots, -1) = 0$, and if r = m, then $D^r'P(t; t) = (-1)^{m'}$. Hence,

$$F_N(t) = (-1)^{m'}(-1)^{m'}G_N(t) = G_N(t).$$

Suppose now that $t_i < 0$ for some *i*. Then for all $N > -1/t_i$ we have $\alpha_N(x) = 0$ if $x \leq t$ and P(x; t) = 0 otherwise. Hence, $F_N(t) \rightarrow 0$. On the other hand, if $t_i > 0$, $i = 1, \dots, q$, then for all $N > \max_i \{1/t_i\}$ we have

$$F_N(t) = \int_{-1}^{1/N} \cdots \int_{-1}^{1/N} D^m G_N(x) \cdot P(x; t) dx_1 \cdots dx_q,$$

and replacing $\langle t_1, \dots, t_q \rangle$ by $\langle 1/N, \dots, 1/N \rangle$ in (1), we see that $F_N(t)$ is a polynomial in t of degree $\langle m_i \text{ in } t_i, N = 1, 2, \dots$.

Since F_N converges to G uniformly on compact sets, it follows that G is equal to a *polynomial* F(t) of degree $\langle m_i \text{ in } t_i \text{ on } Q = \{t | t_i > 0, i = 1, \dots, q\}$, and equal to zero on the complement of Q; in other words, $G = U \cdot F$, where U is the characteristic function of Q. Therefore,

(2)
$$\alpha = D^m G = D^m (U \cdot F) = \sum_{0 \leq r < m} \binom{m}{r} D^{m-r} U \cdot D^r F,$$

where

$$\binom{m}{r} = \prod_{i=1}^{q} \binom{m_i}{r_i}$$

and the strict inequality follows from the fact that $D^r F = 0$ if $r_i = m_i$ for some *i*. Now, since for r < m, $D^r F$ is a polynomial of degree less than $m_i - r_i$ in t_i , and $D^{m-r}U = D^{(m-r)'}\delta$, it follows that $D^{m-r}U \cdot D^r F$ is a constant multiple of $D^{(m-r')}\delta$. Thus, (2) may be rewritten as

(3)
$$\alpha = \sum_{0 \leq r_i < m_i} C_{(r_1, \cdots, r_q)} D^{(r_1, \cdots, r_q)} \delta.$$

Reference

1. L. Schwartz, Théorie des distributions. I, Actualités Sci. Indust. No. 1245, Hermann, Paris, 1957; p. 100.

SAN DIEGO STATE COLLEGE

1044