ON DISTRIBUTIONS WITH SUPPORT AT THE ORIGIN

LEON NOWER ${ }^{1}$

Among the results of the L. Schwartz theory of distributions is the following

Theorem. If α is a q-dimensional distribution whose support is the origin of R^{q}, then α is a linear combination of the Dirac δ-distribution and some of its derivatives. [1].

It is the purpose of this paper to supply a new, sequential-theoretic, proof of this theorem. I should like to thank Professor Korevaar for suggesting this problem.

Proof. Let $\left\langle\delta_{N}\right\rangle$ be a fundamental sequence of C^{∞} functions which defines δ, and such that the support of δ_{N} is contained in

$$
\begin{aligned}
I_{N}=\left\{x=\left\langle x_{1}, \cdots, x_{q}\right\rangle \mid-1 / N<x_{i}<1 / N, i=1, \cdots, q\right\} & \\
& (N=1,2, \cdots .
\end{aligned}
$$

Then $\alpha_{N}=\alpha * \delta_{N} \in C^{\infty}$, the support of α_{N} is the same as that of δ_{N}, and $\alpha_{N} \rightarrow \alpha$ distributionally. Hence, for some multi-index $m=\left\langle m_{1}, \cdots\right.$, $\left.m_{q}\right\rangle$ there is a sequence $\left\langle G_{N}\right\rangle$ of C^{∞} functions with the following properties:
(a) $D^{m} G_{N}=\alpha_{N}$ for each N; (b) $\left\langle G_{N}\right\rangle$ converges to a continuous function G uniformly on compact sets (and therefore $D^{m} G=\alpha$); and, because I_{N} supports α_{N}, (c) $G_{N}(x)=0$ if, say, $x_{i}<-1, i=1, \cdots, q$, $N=1,2, \cdots$.

Now let

$$
\begin{aligned}
P(x ; t) & =\prod_{i=1}^{q} \frac{\left(t_{i}-x_{i}\right)^{m_{i}-1}}{\left(m_{i}-1\right)!} \quad \text { if } x_{i}<t_{i}, i=1, \cdots, q, \\
& =0 \quad \text { otherwise },
\end{aligned}
$$

and
$F_{N}(t)=\int_{-1}^{t_{q}} \cdots \int_{-1}^{t_{1}} D^{m} G_{N}(x) \cdot P(x ; t) d x_{1}, \cdots, d x_{q}, \quad N=1,2, \cdots$.
Integrating by parts m_{i} times with respect to x_{i} and observing that $D^{r} P(x ; t)=0$ if $r_{i}=m_{i}$ for some i, we have

[^0]\[

$$
\begin{equation*}
\left.F_{N}(t)=\sum_{0<r \leq m}(-1)^{r^{\prime}} D^{m-r} G_{N}(x) \cdot D^{r^{\prime}} P(x ; t)\right]_{x=\{-1, \cdots,-1\rangle}^{x=\left\langle t_{1}, \cdots, t_{q}\right\rangle} \tag{1}
\end{equation*}
$$

\]

where $(-1)^{r}=\prod_{i=1}^{q}(-1)^{r_{i}}$ and $r^{\prime}=\left\langle r_{1}-1, \cdots, r_{q}-1\right\rangle$. Now, if
 $D^{r^{\prime}} P(t ; t)=(-1)^{m^{\prime}}$. Hence,

$$
F_{N}(t)=(-1)^{m^{\prime}}(-1)^{m^{\prime}} G_{N}(t)=G_{N}(t)
$$

Suppose now that $t_{i}<0$ for some i. Then for all $N>-1 / t_{i}$ we have $\alpha_{N}(x)=0$ if $x \leqq t$ and $P(x ; t)=0$ otherwise. Hence, $F_{N}(t) \rightarrow 0$. On the other hand, if $t_{i}>0, i=1, \cdots, q$, then for all $N>\max _{i}\left\{1 / t_{i}\right\}$ we have

$$
F_{N}(t)=\int_{-1}^{1 / N} \cdots \int_{-1}^{1 / N} D^{m} G_{N}(x) \cdot P(x ; t) d x_{1} \cdots d x_{q}
$$

and replacing $\left\langle t_{1}, \cdots, t_{q}\right\rangle$ by $\langle 1 / N, \cdots, 1 / N\rangle$ in (1), we see that $F_{N}(t)$ is a polynomial in t of degree $<m_{i}$ in $t_{i}, N=1,2, \cdots$.

Since F_{N} converges to G uniformly on compact sets, it follows that G is equal to a polynomial $F(t)$ of degree $<m_{i}$ in t_{i} on $Q=\left\{t \mid t_{i}>0\right.$, $i=1, \cdots, q\}$, and equal to zero on the complement of Q; in other words, $G=U \cdot F$, where U is the characteristic function of Q. Therefore,

$$
\begin{equation*}
\alpha=D^{m} G=D^{m}(U \cdot F)=\sum_{0 \leqq r<m}\binom{m}{r} D^{m-r} U \cdot D^{r} F \tag{2}
\end{equation*}
$$

where

$$
\binom{m}{r}=\prod_{i=1}^{q}\binom{m_{i}}{r_{i}}
$$

and the strict inequality follows from the fact that $D^{r} F=0$ if $r_{i}=m_{i}$ for some i. Now, since for $r<m, D^{r} F$ is a polynomial of degree less than $m_{i}-r_{i}$ in t_{i}, and $D^{m-r} U=D^{(m-r)^{\prime}} \delta$, it follows that $D^{m-r} U \cdot D^{r} F$ is a constant multiple of $D^{\left(m-r^{\prime}\right)} \delta$. Thus, (2) may be rewritten as

$$
\begin{equation*}
\alpha=\sum_{0 \leq r_{i}<m_{i}} C_{\left(r_{1}, \cdots, r_{q}\right)} D^{\left(r_{1}, \cdots, r_{q}\right)} \delta . \tag{3}
\end{equation*}
$$

Reference

1. L. Schwartz, Théorie des distributions. I, Actualités Sci. Indust. No. 1245, Hermann, Paris, 1957; p. 100.

[^0]: Received by the editors March 20, 1967 and, in revised form, June 16, 1967.
 ${ }^{1}$ This research was supported in part by the San Diego State College Foundation.

