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Introduction. For the definitions of propositional calculi, models

and the finite model property (f.m.p.) we refer to [l] (we use 'model'

for 'strong model').

In this note we describe two equivalent propositional calculi

(equivalent in that they have identical sets of theorems) which differ

in that one has the f.m.p. and the other does not, and in fact has no

nontrivial finite model at all. This shows the f.m.p. is an attribute of

a propositional calculus and not of the equivalence class of the calcu-

lus, unlike, for instance, decidability.

I should like to thank R. Harrop for conversations on the topics of

this paper, and also thank the referee for suggesting considerable

improvements.

A propositional calculus without the f.m.p. Consider the proposi-

tional calculus P which has the single binary connective—», modus

ponens with respect to —>, and axiom schemes

I. X-+X,
II. (7X->A)->F,
III. ((7A-+F)->X)->((72X->F)^Z),

where X, Y and Z stand for arbitrary formulae and IX is an abbrevia-

tion for X-+X, PX for 7(7A), etc.

Lemma 1. A formula is a theorem of P if and only if it is of one of the

forms:

(i) an instance of an axiom scheme or

(ii)  (7*X->A)->F, where k^l.

Proof. Sufficiency is straightforward; (i) is obvious and (ii)

follows by induction on k. For k = l, (PX—>X)—* Y is axiom scheme

II. If we assume the result for k — 1 we have that

(PX —► X) —> 7*_1X is a provable scheme.

From axiom scheme III we have

((PX -* X) -> (7*"1Z)) -> ((P+lX -*X)->Z),

and by an application of modus ponens we prove
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(7*+1X -► X) -> Z.

Necessity follows by induction on the length of proof of a theorem

of P. A theorem with a proof of length one is an instance of an axiom

scheme and is of form (i). A theorem B, with longer proof, if it is not

of form (i) follows by modus ponens from two theorems A, A^>B,

each of shorter proof than B, and so by the induction hypothesis

satisfying (i) or (ii).

If A-+B is an instance of I, then A =75 and B is of form (i) or (ii)

because A is. By inspection no instance of (PX—>X), where k 2:1, can

be of form (i) or (ii), and so A—>B cannot be an instance of axiom

scheme II or of form (ii). Thus A—*B is an instance of axiom scheme

III, and A an instance of (IX—>Y)—>X. Hence A cannot be a substi-

tuted case of axiom schemes I or III, which are specially designed to

avoid this, and so, being of form (i) or (ii), must be an instance of a

scheme

(PX -+X)-+Y,   where    k^l,

and immediately we see that B must be of form (ii).

A corollary of this lemma is that P is consistent, that is not every

formula is a theorem, and also that P is decidable.

Lemma 2. ^4wy nontrivial model of a propositional calculus in which

modus ponens is satisfied and in which the schemes

A0:     X-^X

Ax:     (IX-^X)-^Y

A2:     (PX-*X)-*Y

An_x: (P~lX^X)^Y

are valid has at least n distinct designated elements.

Proof. We adapt a technique from [l ]. Let the model have a set E

of elements, and a set DEE of designated elements. D^E since the

model is nontrivial. We note the following properties. If a, bEE and

a, (a-+b)ED, then bED because the model satisfies modus ponens.

Also (Pa—>a), where \^k<n, is undesignated for all aEE, for if

(Pa—>a)ED for any aEE, we could choose a nondesignated bEE,

and ((Pa—>a)-^b) would be undesignated, contradicting the validity

of the scheme Ak.
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We have that Ina is designated for all re ̂  1 and a GF since the model

satisfies the scheme A0. Thus, for dED, d, Id, - - ■ , P~ld are all

designated. To complete the proof we show they are all distinct.

Assuming the contrary, that is I'd = I'd for some i,j, where O^i <j<n,

we have (Pd-^Pd) = (I'~i(Pd)^*Pd) is designated, which contradicts

what has been noted above.

Theorem 1. The propositional calculus P has no finite nontrivial

model, and does not have the finite model property.

Proof. Any model of P must satisfy modus ponens and make the

scheme (PX—>X)—>Y valid for every k>l, since any such instance

is a theorem by Lemma 1. But then, from Lemma 2, the model needs

an infinite set of designated elements.

Decidable propositional calculi with no finite models have previ-

ously been exhibited by R. Harrop (see, for example, [l]).

We remark in passing that the existence of a consistent proposi-

tional calculus with no nontrivial finite model can be deduced from

the fact that there is no effective test to determine of an arbitrary

propositional calculus whether or not it is consistent (see [2]); since

no inconsistent calculus has a nontrivial model and if a finite non-

trivial model exists for a calculus it can be effectively found.

A propositional  calculus  with the f.m.p. equivalent to F. Let

F* be a propositional calculus with the same axiom schemes as P, but

with the single rule

(IX -* F) -> X

(PX -+ Y)-^Z

The conclusion of this rule is the same as the conclusion of modus

ponens with (IX—>Y)—>X first premise, and axiom scheme III second

premise. A similar proof to that of Lemma 1 establishes that the

theorems of F* are just those formulae satisfying (i) or (ii), so that

F and F* are equivalent.

Theorem 2. F* has the finite model property.

Proof. Define the length of a formula to be the number of symbols

(parentheses, propositional variables and connectives) of which it

consists.

Let/be a formula of F* which is not a theorem, and let \sx, • ■ ■ ,sn]

be the finite set of all formulae constructable from the propositional

variables of/and of length less than or equal to the length of/.
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We construct a finite model which rejects/. The elements of this

model are {slt ■ ■ • , sn, 1}. The designated elements are the provable

formulae of si, • • • , sn together with 1. The truth table is defined by

(1-»1) = 1,

a-* sd = i,

(*«-»D = i.
(st—*sj) = sk    if (5,-—>Sj) = skE {sx, ■ ■ ■ , sn},

= 1    otherwise,

where i, jE {1. ■ • • . n}.

This is a model of P*, for firstly the axiom schemes are valid; if

elements of 1, Sx, ■ ■ ■ , sn are substituted into the axiom schemes the

result is either 1 or a provable member of slt • • ■ , sn. Secondly, the

rule preserves designation. If the conclusion is not designated, it is a

nonprovable one of Si, • • • , sn, but then the premise, containing the

same propositional variables as the conclusion and of shorter length,

is a member of Si, ■ • • , sn. It cannot be a theorem (otherwise the

conclusion would be) and so is not designated.

Finally/ is rejected in this model by the identity substitution for

/G {si, • • • , sn} and is not provable.
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