ON THE EQUIVALENCE OF A TERNARY QUADRATIC FORM

E. H. HADLOCK AND AMIN MUWAFI

Introduction. In the classical theory of integral ternary quadratic forms a determinant

$$d = \begin{vmatrix} a & t & s \\ t & b & r \\ s & r & c \end{vmatrix} \neq 0$$

is associated with the form

$$f = ax^2 + by^2 + cz^2 + 2ryz + 2sxz + 2txy$$
.

The g.c.d. of the cofactors of the elements of d is designated by Ω . Then Δ is defined by $d = \Omega^2 \Delta$. The concepts of primitive, properly primitive and reciprocal forms as well as equivalence, properties and theorems relating to such concepts are given in [1].

LEMMA 1. If g and its reciprocal G are primitive, positive or indefinite forms, then g is equivalent to a primitive form

(1)
$$f = ax^2 + by^2 + cz^2 + 2ryz + 2sxz + 2txy$$

in which

$$(2) (a, t) = 1 and s \neq 0.$$

PROOF. Case (i). Let g and G be properly primitive. By [2, Corollary, p. 16] g is equivalent to a form (1) whose first coefficient a and the third coefficient C of whose reciprocal form are positive integers which are relatively prime to each other and to $2\Omega\Delta$. Let p be an odd prime divisor of a. Then

(3)
$$(a, C) = (aC, 2\Omega\Delta) = 1$$
 and $\Omega C = ab - t^2 \Rightarrow p \nmid t$.

Thus (2)₁ holds. If s = 0, then replacing x by x + hz, $h \neq 0$, in f gives a form in which the coefficient of $2xz \neq 0$ and such that a, t and C are unchanged.

Case (ii). Let g be improperly primitive and G be properly primitive. By [2, Theorem 20] we may assume that a/2 and C are odd and relatively prime to each other and to $\Omega\Delta$. Thus by (3)₃

$$\Omega C = (a/2)(2b) - t^2 \Rightarrow \text{ as in Case (i)} \quad p \nmid t.$$

Received by the editors June 6, 1967.

Also we observe from the proof of [2, Theorem 19] that Ωt is odd. Hence (2)₁ holds.

Case (iii). Let G be improperly primitive. By [2, Theorem 21] we may assume that a and C/2 are odd relatively prime integers and prime to $\Delta\Omega$. Thus (3)₃ holds when C is replaced by C/2 and Ω by 2Ω and hence (2)₁ holds.

LEMMA 2. There exists a linear transformation T which takes the form f of Lemma 1 into an equivalent form $f_1 = ax^2 + b_1y^2 + c_1z^2 + 2r_1yz + 2s_1xz + 2t_1xy$ with the same first coefficient a of f such that the coefficients s_1 and t_1 are relatively prime. Moreover the third coefficient C_1 in F_1 , the reciprocal of f_1 , is equal to C in F, the reciprocal of f.

PROOF. Let T: replace x by x+ky, y=y, z=z. Then $s_1=s\neq 0$, $t_1=ak+t$. Also $C_1=C$ for $\Omega C_1=af(k,1,0)-t_1^2=a(ak^2+b+2tk)-(ak+t)^2=\Omega C$.

By (2) and Dirichlet's Theorem, there is an integer k such that $t_1 = ak + t = p$, a prime and $(t_1, s_1) = 1$ and where $s_1 \neq 0$.

THEOREM. Every primitive, positive or indefinite, ternary quadratic form is equivalent to a primitive form in which the coefficients of 2xz and 2xy are one and zero respectively.

PROOF. Apply the transformation T_1 : x = x, replace y by $s_1y + \beta z$ and z by $-t_1y + \delta z$ to f_1 of Lemma 2 to obtain a form f_2 in which the coefficients s_2 of 2xz and t_2 of 2xy are given by

$$s_2 = s_1 \delta + t_1 \beta, \qquad t_2 = 0.$$

By Lemma 2, $(s_1, t_1) = 1$ so that there exist integers β and δ such that $s_2 = 1$. Moreover $|T_1| = s_1 \delta + t_1 \beta = s_2 = 1$.

REMARK. B. W. Jones has shown that every ternary quadratic form is equivalent to one in which the coefficient of 2xy is zero [3].

References

- 1. L. E. Dickson, Studies in the theory of numbers, Univ. of Chicago Press, Chicago, Ill., 1930, pp. 6-10.
 - 2. —, ibid., Corollary, p. 16; Theorems, 19, 20 and 21, p. 17.
- 3. B. W. Jones, The regularity of a genus of positive ternary quadratic forms, Trans. Amer. Math. Soc., 33 (1931), 111-124.
- 4. L. E. Dickson, Modern elementary theory of numbers, Univ. of Chicago Press, Chicago, Ill., 1950; p. 90.

University of Florida