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1. Introduction. If X is a semigroup, let Ex denote the set of idem-

potents of X. The major purpose of this paper is to show that S is a

regular semigroup with Es^KXB, where if is a semilattice and B is

a rectangular band, if and only if S^TXB where Tis an inverse semi-

group with Et^K. In the case S is bisimple, the structure of 5 may

be described completely mod groups for several classes of semilattices

K (Remark 1). In the case 5 is a Clifford semigroup, its structure may

also be completely determined (Remark 2). A characterization of

certain classes of regular semigroups, including right groups, is an

immediate consequence of the theorem.

We adopt the terminology and notation of [l ].

2. The decomposition theorem.

Theorem. 5 is a regular semigroup such that Es=KXB where K is

a semilattice and B is a rectangular band if and only if S=TXB where

T is an inverse semigroup with ET=K. S is bisimple if and only if T is

bisimple.

Proof. Let 5 be a regular semigroup such that ES=KXB where

K is a semilattice and B is a rectangular band. Let B be the set prod-

uct IXJ under the multiplication (i,j)(k, s) = (i, s). UaES, aER(e.i.j)

rily.i,,) where (e, i,j), (f, k, s)EKXB since 5is a regular semigroup.

Thus, a = (e, i,j)a = a(J, k, s). Hence, (g, r, t)a = (g, r, q)a and a(g, p, q)

= a(g, r, q) for gEK, r, pEI and t, qEJ- (We will use this fact several

times in the proof without further mention.) Therefore, aE(e, i, s)

■S(f, i, s) and

5 = U{(e, i,j)S(f, i,j):e,fEK, i E I,jEJ).

Let if, and jo be fixed elements of I and / respectively. (The ele-

ments ia and jo may be selected arbitrarily. Then, they are fixed.)

We will define an isomorphism 6 of

M = (\J{(e,io,jo)S(f,i0,jo):e,fEK}) X B

onto 5 = U{(e, i, j)S(f, i, j): e, fEK, iEI, jEJ) in the following
manner:

(x, i,j)d = (e, i,j)x(f, i,j)    where    (x, i,j) E((e, io,jo) S(f, to,Jo)) X B.
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First, we show that 6 is single valued. Let u = v = (x, i, j) G (((e, io, jo)

S(f, iojo)) XB)f](((g, i0,j0)S(h, h,j0)) XB).
Thus,

(e, i,j)x(f, i,j) = (e, i,j)((g, io,jo)x(h, i0,jo))(f, i, j)

= (eg, i, jo)x(hf, iQ, j)

= (g, i,j)((e, io,jo)x(f, i0,jo))(h, i,j)

= (g, i,j)x(h, i,j).

Hence ud = vB.

Next, we show that 0 is one-to-one. Suppose that uQ — vQ where

«G(e, io, jo)S(f, i0, jo)XB and »£(g, i0, jo)S(h, i0, jo)XB. Let u

= (x, i,j) and v = (y, k, s). Thus, (e, i,j)x(f, i,j) = (g, k, s)y(h, k, s) =z,

say. Hence, z = (e, i, j)z=(g, k, s)z. Since 5 is a regular semigroup,

there exists z'G-S such that zz'£zEs. Thus, suppose that zz' = (/, p, q)

where t^K, pEI, and qEJ. Hence, (e, i, j)(t, p, q) = (g, k, s)(t, p'q),

(et, i, q) = (gt, k, q), and i = k. In a similar manner7 = s. Thus,

(e, i,j)x(f, i,j) = (g, i,j)y(h, i,j) = (g, i,j0)y(h, i0,j).

Thus,

(g, io, jo)(g, i, jo)y(h, io, j)(h, i0, jo) = (g, io, jo)(e, i, j)x(f, i, j)(h, i0, j0),

(g, io,jo)y(h, io,jo) = (ge, io,j)x(fh, i,j0),

y = (e,io,jo)(g,io,j)x(h,i,j0)(f,i0,jo).

Hence, (y, k, s) G(e, io, jo)S(f, iQ, j0) XB. Thus

(e, i,j)x(f, i,j) = (e, i,j)y(f, i,j),

(e, i,j)(x(f, io,jo))(f, i,j)(f, io, jo) = (e,i,j)(y(f,io,jo))(f,i,j)(f,io,jo),

(e, i,j)x(f, i0,jo) = (e, i,j)y(f, io,jo),

(e,i,j)x = (e,i,j)y,

(e, io,jo)(e, i,j)((e, io,jo)x) = (e, i0)jo)(e, i,j)((e, i0,jo)y),

(e, io, jo)x = (e, i0, jo)y,

x = y.

Hence, u=v and 9 is one-to-one.

Next, we show that 8 maps M onto S. Let (e, i, j)x(f, i, j) G-S. Thus,

((«, io,jo)x(f, io,jo), i,j)6 = (e, i,j)((e,io,jo)x(f,i0,jo))(f,i,j)

= (e, i, jo)x(f, i0, j)

= (e,i,j)x(f,i,j).
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Finally, we show that 6 is a homomorphism. Let (x, i, j)E(e, io, jo)

■ S(f, io,jo) XB and (y, k, s) E (g, io,jo)S(h, io,jo) XB. Hence,

(x, i,j)9(y, k, s)0 = (e, i,j)x(f, i,j)(g, k, s)y(h, k, s)

= (e, i, s)x(f, i,j)(g, k, s)y(h, i, s)

= (e, i, s)(x(f, i0,jo))(f, i,j)(g, k, s)((g, io,jo)y)(h, i,s)

= (e, i, s)x(fg, i0, jo)y(h, i, s)

= (e, i, s)x(f, i0,jo)(g, io,jo)y(h, i, s)

= (e, i, s)xy(h, i, s).

Since xy E (e, io, jo)S(f, io, jo) (g, io, jo)S(h, i0, jo) Q (e, io, jo)S(h, i0j0),

((x, i,j)(y, k, s))6 = (xy, i, s)6 = (e, i, s)xy(h, i, s). Thus, ((x, i,j) (y, k, s))0

= (x, i, j)0(y, k, s)6.

Let T = U {(e, io, jo)S(f, i0, jo): e, fEK). Hence, we have shown that

S^TXB. Clearly, T is a semigroup with Et= {(e, io,jo): eEK}^K.

If aE(e, to, jo)S(f, i0, jo) there exists xES such that a = axa =

a((f, io,jo) x(e, i0,jo))aand, hence, T is regular. By [l, Theorem 1.17],

T is an inverse semigroup. The converse follows by a routine calcula-

tion.

Corollary. S is a regular semigroup whose idempotents form a

rectangular band B if and only if S=GXB where G is a group. In par-

ticular, S is a regular semigroup whose idempotents form a right zero

semigroup if and only if S is a right group.

In the next two remarks, we use the notation of the theorem.

Remark 1. The theorem is of particular interest in the case 5 is

bisimple. In this case, T has been described completely mod groups

for several classes of K (for example, see [3] and [4]). Hence, in these

cases, the structure of ,S may be described completely mod groups.

Remark 2. We now give another case of particular interest. A

semigroup which is a union of groups is called a Clifford semigroup

[2, p. 43]. Clearly, a Clifford semigroup is regular. Sisa Clifford semi-

group if and only if J" is a Clifford semigroup [l, p. 130, Exercise 10].

Hence, since in this case the structure of T is known completely mod

groups [l, p. 128, Theorem 4.11 ], the structure of 5 is also known.

Remark 3. The theorem represents a natural initial step in the

study of the structure of regular semigroups 5 such that Es is a sub-

semigroup beyond the inverse semigroups. We also take a step in the

solution of the following problem: If S is a regular semigroup such

that Es is a subsemigroup, how is the structure of 5 affected by that

of£s?
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