
ON THE DERIVATIVE OF AN ENTIRE FUNCTION1

morris marden

1. Introduction. Our present paper has several objectives. First,

in §2, we shall establish a new representation for the derivative of an

entire function of finite order. This representation is a generalization

of one developed in a previous paper [l] but we shall derive it by a

method simpler and more direct than that used for the earlier repre-

sentation.

Secondly, in §3, we shall apply the new representation to the fol-

lowing theorem stated by Laguerre but proved by Borel.

Let f be a real entire function of finite genus p with m nonreal zeros.

In addition to one zero of the derivative f of f between each pair of ad-

jacent real zeros off,f has at mostp+m real and nonreal zeros.

Our proof of this theorem will be simpler, more direct and much

shorter than Borel's eight page proof [2].

Thirdly, in §4, we shall deduce from our representation some

theorems on the location of the zeros of /' when the zeros of / lie in

two specified domains. These theorems include some generalizations

of Lucas' Theorem (on the critical points of polynomials) to entire

functions of finite order.

Finally, in §5, we shall apply the theorem of the previous section to

a number of special cases in which the domains are rays, sectors, half

strips or circular disks.

2. Representation for the derivative. In the sequel we denote by

[p] the largest integer not exceeding p. Our basic theorem is then the

following.

Theorem (2.1). Letf be an entire function of finite order p having

zeros bi, b2, • • ■ , bm, au a2, a3, • ■ ■ where 0 < | ax\ ^ | a2| ^ • • • and

thus

(2.1) £ |ay|-^< «,       p^[p].
y-i

Let fi, fj, • • • , fB with n=m+[p] be zeros of the derivative f off. Then

for all z=£aj
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f(z)xp(z)    "        4>(af)
(2.2) f'(z) = n>  K> £-—-,

4>(z)     j=ixp(af)(z- a,)

where

m n

(2.3)      d,(Z) = n (2 - **),   *& = n (* - r»).
k=X k=l

If {bi, bi, ■ • ■ , bm} = 0, take m=0 and <b(z) = l in (2.2). The series in

(2.2) converges uniformly in every bounded domain.

Proof. First, we shall show that

f(z)   " d>(aj)
(2.4) F(z) = — £-—-

#(z) ,--i ^(a,-)(« — a})

is an entire function. We begin by noting that

p ,^     /(z) f      +M
FN(z) =-2^1-

4>(z) y-i *(«/)(« — «y)

is an entire function since f/<j> has simple zeros at the aj. It remains to

show that the sequence { Fat } converges uniformly in every bounded

domain.

For this purpose, let us choose F>0 and M = max\f(z)/<p(z)\  for

| z | = R. Let us then choose N so large that

| a/1 > 2max(|F| , | b± | , • • • , | bm \ , | f , | , • • • , |f„|)for/> N.

Hence, for j>N and \z\ ^R

\z-aj\  >  | aj\/2,    \aj-bk\  < (3/2) | o,-| ,     | «y - f»|  > | a,\ /2,

| <t,(af) |   < (3/2)-| aj\m, | tf(cy) |   >  | a,-|»2-\

Thus for all \z\ ^R

\F(z)-F„(z)\   ̂ M±,       \«f\
(2 5) #-*+i I *(*y) I  I s - ffy |

oo

< 3f3m2"-m   £   | a/|"-»-1.

i-N+l

Since n=m+[p]^m+p, we infer from (2.1) that, by choosing N

sufficiently large, we may make the right side of (2.5) arbitrarily

small. That is, Fjv(z)—>F(z) uniformly in every bounded domain.

Secondly, we notice that, since at the zeros a3- of f/d>
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Fiat) = lim Fiz) =/(#(«/),       j = 1,2,3, ■•-,

we may write

(2.6) [fto/lK*)] - Hz) = [fiz)/d>iz)]giz),

where g(z) is an entire function. Let us show that g(z) = 0.

For this purpose, we use the Hadamard Theorem to write / in the

form

fiz) = *(«)e<»w ft (1 - a/«y) exp[(«/ay) + • • ■ + H/p)iz/a,)'],
y-i

where Qiz) is a polynomial of degree qS [p]. Thus

:L^ = -^ + (2'(z) + Z-
/(z)       </>(z) ,_i  aj(z - a,)

From this we infer at once that, as z—> °o with z^aj,

(2.7) lim |/'(z)/z['1/(z)|   = 0.

Since |$(z)/^(z)| =0(|z|"1_") as z—>oo and n = m+[p], we conclude

from (2.7) that

lim \f'iz)4>iz)/fiz)4iz)\   =0.

Also from (2.4)

lim | F(z)0(z)//(z) |   = 0

and thus from (2.6), lim inf g(z)=0. Hence, g is a bounded entire

function and so giz) = const = 0, establishing the representation (2.2).

3. Laguerre-Borel Theorem. We shall now prove a version of this

theorem stated in terms of the order of the function /, instead of its

genus.

Theorem (3.1). Let fbe a real entire function of finite order p having m

nonreal zeros bk. Let set R consist of one real zero of the derivative f

chosen between each pair of adjacent zeros of f. Then f has at most

n = [p]+m zeros, real and nonreal, not belonging to R.

Proof. Let us assume on the contrary that/' has the set

V = Hi, f2, • • • , U+i)

of zeros not in R. Then, since /'(f„+i) =0, we obtain from (2.2) and

(2.3) the identity
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A <l>(a,-)
(3.1) £-—-= 0.

y-i (fi - a,-)(£i - a>) • ■ • (fB+1 - a,-)

Also, the m nonreal zeros of/ must consist of (m/2) conjugate imagi-

nary pairs (bk, bk) since /is real. Hence,

m/2

(3.2) <b(aj) = II (bk - a,)(lk - a,) > 0,       for all as.
k=i

Let us separate V into three subsets, any one of which might be

empty:

(1) Vi consisting of all real $K lying on 3C(F), the smallest interval

of the real axis containing R;

(2) V2 consisting of all real ft not lying on 3C(F);

(3) Vs consisting of all nonreal £k.

Let us suppose that {iEViCM, where lj is the interval between the

consecutive real zeros aj and ai+i of /, a,<ay+1. By Rolle's Theorem

/' has on lj an odd number of zeros of which just one belongs to R.

Hence, either/' has also a zero f2£ VxCMj, f27^fi, or such a f2 can be

introduced into V in place of some f4 originally in V. Thus, without

loss of generality, we can assume that

VxCMj= (fi,f2) • ■ -,*»),       k^l.

The corresponding factor in the denominators of (3.1) is

(fi - «y)(f2 - a,) ■ ■ ■ (f« - a,) > 0,       j = 1, 2, • • • .

Let us next suppose {~»EV2. The corresponding factor in the de-

nominators of (3.1) is (f„ — af) which has the same sign for all/.

Finally, let us suppose f„£ Vz. Since/' is real, it has also f, as a zero.

If f»C ^s> we may admit f„ to V in place of some other f* originally in

F. The corresponding factor in the denominators of (3.1) is

(f» - ay)(f- - ay) > 0>       / = L 2> • • • •

In short, if/' had ra + 1 zeros not in R, every term in (3.1) would

have the same sign and so the sum could not vanish, in contradiction

to (3.1). Hence, Theorem (3.1) is true.

4. Entire functions with zeros in two domains. In the sequel we

shall use the notation of Q(T) for the complement of a set T in the

complex plane, 3C(F) for the convex hull of T and S(F, v) for the set

of points from which T subtends an angle of at least v. The set S(F, v)

is star shaped relative to T and has the properties
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T E X(7) = S(7\ ir) C S(2\ vi) E S(7, v2)

if  7T>J'l>»'2^0.

As an application of Theorem (2.1), we shall prove the following:

Theorem (4.1). Letf be an entire function of finite order p which has

the zeros ai, a2, a3, ■ ■ ■ on a set T for which e[3C(7)] is not empty. Let

f also have the zeros bi, h, • • ■ , bm in Q [§(7", /3)] with 0 </3 <ir/m. Then

the derivative f of f has at most n=m+[p] zeros in e[S(7, v)] where

v = iw-mf3)/in + l).

Proof. Let us suppose that/' had the n + 1 distinct zeros ft, ft,

• • ■ , ft+i in e [§(7, v) ]. Since T subtends an angle less than v at each

ft, we can associate with each ft a point £*, ijjb^ft, so that

(4.1) 0 = arg[fe - ft)/(ay - ft)] < ",       for all j and k.

Likewise, we can associate with each bk a point ck9^bk such that

(4.2) 0 ^ arg[(ay - h)/ick - bk)] < /3        for all j and k.

If we multiply (3.1) by

[(£i - ft) • • • (l»+i - ft+i)]/[(ci - 6i) • • • icm - bm)},

we may rewrite (3.1) as

"   (oy -&!)••• (ay - 6m)(£i - ft) • • • Hn+i ~ ft+i)      n
(4.3) 2-/ - = 0.

y-i (ci - *i) • • • icm - bm)iaj - ft) ■ ■ ■ (ay - ft+i)

According to (4.1) and (4.2), each term on the left side of (4.3) is a

vector lying in the sector

0 ^ arg s ^ mB + (n + l)v < ir.

Therefore, the sum of these vectors cannot vanish, in contradiction to

(4.3). Hence,/' can have at most n zeros in e[§(7, v)] as stated in

Theorem (4.1).

In Theorem (4.1) we tacitly assumed that m^l. If however

{bi, h, • • • , bm} =0, we may similarly deduce from Theorem (2.1)

the following result (Marden [5]).

Theorem (4.2). Let all the zeros of an entire function f of finite order

lie on a set T with e[3C(7)]?^0. The derivative f then has at most

n= [p] zeros in e[(S7,7r/(n-|-l))].

In particular, if 0^p<l, then n = 0 and all zeros of/' lie in 3C(7).

Hence, Theorem (4.2) is a generalization of Lucas' Theorem to entire

functions.
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5. Special cases. Let us specialize in several ways the set T occur-

ring in Theorem (4.1).

Let us suppose that T is the positive real axis. Then S(T, v) is the

sector | argz| Sir —v and hence e[s(F, v)} is the sector | arg( — z)\ <v.

Thus, we obtain

Corollary (5.1). Letf, an entire function of finite order p, have m

zeros in the sector [ arg( — z)\ <fi<ir/m and its remaining zeros on the

positive real axis. Then /' has at most n = m + [p ] zeros in the sector

|arg( — z)\ <v, where v = (ir — mfi)/(n + l).

JAn interesting special case is the one in which / has m negative

zeros and all its remaining zeros positive. In that case fi = 0, v =

7r/(ra + l). We note that in this special case/ is not necessarily a real

function.

As a generalization of Corollary (5.1) let us choose T as the sector

| arg z\   ^ a < v/2.

Then S(F, v) is the sector |argz| 5=7r — v+a so that e[S(F, v)] is the

sector | arg( — z)\ <v—a. Thus, we obtain

Corollary (5.2). Let/, an entire /unction o/ finite order p, have m

zeros in the sector |arg( — z)| <fi<ir/m and its remaining zeros in the

sector |arg z\ Sa<v/2, where v = (ir — mfi)/(n + l) and n = m+[p].

Then/' has at most ra zeros in the sector | arg(— z) | <v — a.

An additional special case of interest is the one for which T is a

half-strip such as

(4.4) | g(z) |   g c,        (R(z) ^ a > 0.

Let Cg be the circle containing the arc from which the segment be-

tween points zi = a+tc, z2 = a — ic subtends an angle of fi. Let z3 = b +ic

and Zi = b — ic be also points on Cg. Let Kg consist of the points ex-

terior to Cg but interior to the angle bounded by lines z\, zt and z2, z3

but not containing T. We may thus state the following:

Corollary (5.3). I//, an entire/unction of finite order p, has m zeros

in the domain Kg and its remaining zeros in the hal/strip (4.4), then /'

has at most n = m+[p] zeros in the domain K„ where fi<ir/m,

v = (ir-fim)/(n + l).

Finally, let us consider the special case of an entire function with a

finite number of zeros. For this case, we may state the following:

Corollary (5.4). I//, an entire /unction of finite order p, has m zeros
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in the domain \ z\ >a csc(j3/2), where p<ir/m, and its remaining zeros

in the disk \z\ gs, then f has at most n=m+[p] zeros in the domain

\z\ >a csc (y/2), where v=(ir — m(5)/(n + 1).

Corollary (5.4) has some similarity to the following result due to

Walsh [3]. If the polynomial/of degree mi+nti has mi zeros in region

Ci: \z\ ^rx and w2 zeros in region C2: \z\ ^r2, then its derivative/'

has all its zeros in Ci, Ci and C: \z\ ^r, =(mir2 — m2ri)/(mi+m2);

furthermore, if r\ < Min(r, r2), /' has exactly nti — 1 zeros in Ci and m2

zeros in C\JC2.

It has also some similarity to the following result of Marden [4]:

If an wth degree polynomial has k zeros (l<k^n) in the region

C:\z\^R, its derivative has at most n — k zeros in region

\z\ >Rcsc [ir/2(n-k + l)].
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