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1. Introduction. Let x be a complex variable and let DQ be a

simply connected compact domain in the x-plane which contains the

origin 0 in its interior. Let p0 be a positive number. Consider a system

of linear ordinary differential equations of the form

(1.1) fdy/dx = A(x, e)y

where <r is a nonnegative integer, e is a complex parameter, y is an

w-dimensional vector, and A(x, e) is an w by w matrix with compo-

nents holomorphic in a domain

(1.2) xE Do, |«|   £pa.

Let

CO

(1.3) A(x,e) =   ZeM4(x)

be the expansion of A(x, e) in powers of e, where Ak(x) are holomor-

phic in Do-

In this paper, we shall prove the following theorem.

Theorem. For each nonnegative integer m, there exists an n by n

matrix P(x, e) satisfying the following conditions:

(i) the components of P(x, e) are holomorphic with respect to (x, e) in

the domain

(1.2') xEDx, |e|   ^p0)

where Dx is a certain subdomain of D0 which contains the origin 0 in its

interior;

(ii) P(x, 0) = ln for xEDx and P(0, e) = ln for |e| ^p0, where ln

is the n by n unit-matrix;

(iii) the system (1.1) is reduced to

/    m <r—X \

(1.4) e'du/dx =  < Z «*4*0) + em+1 Z ikBk(x)\ u
\ k—0 *-0 '
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by the transformation

(1.5) y = P(x, e)u

where Bk(x) (k = 0, 1, • • • , <r — 1) are re by re matrices whose components

are holomorphic for xEDx.

Remark. In case when <r = l, the right-hand member of (1.4) has

the form

•f £ tkAk(x) + e»'+1Fo(x)} u.
V. k=0 )

In particular if a = 1 and m = 0, the system (1.4) has the form

tdu/dx = \Ao(x) + eBo(x)}u.

G. D. Birkhoff [2] has proved a result similar to ours for linear

differential equations at an irregular singular point. Since his result

was concerned with the behavior of solutions at a singular point with

respect to the independent variable, it was necessary to assume a

certain condition on the monodromy matrix at the singular point.

(See, for example, H. L. Turrittin [5].) We do not need to assume

such a condition, insomuch as our result is only concerned with the

singularity with respect to the parameter.

It might be possible to prove our theorem by using a method simi-

lar to that of Birkhoff's result. However, it is necessary to modify his

lemma on matrices [l] in such a manner that this lemma can be used

for matrices depending on many variables. Instead of doing this, we

shall prove our theorem by using a direct method which is based on

the theory of ordinary differential equations in a Banach space. This

method was suggested by Y. Sibuya in one of his papers [4]. The

author is indebted to Professor Yasutaka Sibuya for valuable discus-

sions during this work.

2. Fundamental nonlinear equations. Let us put

DO

(2.1) P(x, e) = 1„ + <T+l £ ekPk(x)
k=o

and

(2.2) B(x, e) =  D e*F*(x),
fc-0

where
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Sk(x) = Ak(x),        (k = 0, 1, • • • , m),

= Bk-m-x(x),       (k = m + 1, m + 2, ■ ■ • , m + a).

In order that the transformation (1.5) reduces the system (1.1) to

the system (1.4), we must have the differential equation

(2.4) <?dP/dx = A(x, e)P - PB

satisfied by the matrices P and B. From this equation we derive

0 = Am+1+k(x) — Bm+x+k(x)

k

(2.5) +  £ {Ak_h(x)Ph(x) - Ph(x)Bk_h(x)},
h-0

(*-0,l, •.-,»-1)

and

v+k

dPk(x)/dx = Am+x+,+k(x) + X) Ac+k-h(x)Ph(x)

<r+k

-     £   Ph(x)Ba+k-h(x),        (k = 0,\,2,--- ),
h=k—m

where

(2.7) Ph(x) = 0   if    h < 0.

We shall determine P and B by solving these equations.

We should remark here that, in many cases, formal power series P

and B which satisfy the equation (2.4) are not convergent. (See, for

example, Y. Sibuya [3] and W. Wasow [6].) In order to get P as a

convergent power series in e we must choose a suitable B. To do this,

first of all, let us solve (2.5) with respect to Bm+x+k(x). Then we get

iL+i+*0*0 = An+x+k(x) + Hm+1+k(x; P0, • ■ ■ , Pk),

(k = 0, 1, 2, • • • , a - 1)

where H, are defined by

Hi = 0,        (j = 0, 1, • • • , m),

k

77m+i+jfc(x; Po, ■ • ■ , Pk) =  X {Ak-h(x)Ph — PhAk_h(x)}

(2.9)

—    Z-i PhHk-k,
h=0

(k - 0, 1, • • • , a - 1).
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Substituting (2.8) into (2.6) we get

(2.10) dPk/dx = /*(*; %),       (k = 0, 1, 2, • • • ),

where

a+k

fk(x;^) = Am+1+,+k(x) + £ A,+k_h(x)Ph
4=0

(2 11) "+k a+k

- £   PhA.+k-h(x) -     £   PhH.+k-h(x; $),
h=k—m h=k—m

(k = 0, l, 2, • • •),

with <>|3 denoting an infinite-dimensional vector {F^; fe = 0, 1, • • • }.

If we denote by f(x; ty) the infinite-dimensional vector

{/*(*;$);       * = 0, 1,2, •••},

then equations (2.11) can be written in the form

(2.12) dty/dx = f(x; ,>P).

We shall solve this differential equation in a suitable Banach space.

If ^3 is determined, then the quantities Bk are determined by (2.8) and

(2.9).

3. A lemma on f(x; ty). Since components of the matrix ^4(x, e) are

holomorphic in the domain (1.2), there is a positive number p such

that p>po and that components of A are holomorphic in the domain

(3.1) xGTJo, \e\   ^ p.

Let us denote by 33 the set of all infinite-dimensional vectors ^

= {Pk;k = 0, 1, 2, • • • } such that

(i) Pk are re by re matrices whose components are complex numbers;

(ii)ST-oP»|-P»|< + «,
where |F*| is the sum of absolute values of components of Pk. For

each 'p, let us define a norm ||^3|| by

(3-2) ||$|| =   f>|Pt|.
k-a

Then we can regard 58 as a Banach space over the field of complex

numbers.

Let ty(x) be a mapping from D0 to 33. This mapping is said to be

33-holomorphic in D0 if there exists another mapping Q(x) from D0

to 33 such that
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(3.3) lim ll/r1!^* + h) - <J3(x)} - 0(x)\\ = 0
ft-K)

forallxG£0.WedenoteGby^/<fx.If$(x)={P*(x);)fe = 0,l,2, • • • }

is 33-holomorphic in 7?0, then each matrix Pk(x) is holomorphic in F>0

and

(3.4) dy(x)/dx = {dPk(x)/dx;k = 0, 1, 2, • • • }.

Now we can prove the following lemma.

Lemma. Let f(x, $) be the infinite-dimensional vector whose compo-

nents fk(x; $) are given by (2.11). Then f(x; *$) is a mapping from

7J>oX33 to 33 which has the following properties:

(i) for each positive number R there are two positive numbers G(R) and

K(R) such that

(3.5) ||f(«; ¥)N G(«)     /HMI=*
and

(3.6) ||f(s; J}) - f(x; $)|| ^ K{R)\\<$ - $||     for ||$|| £ F, ||$|| g F;

(ii) f(x; $(x)) is ^-holomorphic in Do if ty(x) is ^-holomorphic in

D0.

Let us consider a formal power series in e which is defined by

(3.6) F(x, % e) =   £ **/*(*; $).
t—o

Then from the definition o(fk we derive the following formal identity:

F(x, % e) =   £ eM^+.+^x) + — { £ eM4(«) £ e*F*
*-0 **    V k=0 k=0

~   £ ** £ ^*-*(*)F*}
A=0        A-0 /

(3  7) 1     (    °° m+"

-\ £ 6*F* 2:  e*U»(*) + F4(x; $)]
«*    V fc=0 *=0

-   £ «* £ P»U*-»(*) + 77t_A(x; $)]} .
i=0       A=0 '

By using (3.7), we can prove the Lemma in a straightforward manner.

4. Proof of Theorem. We shall construct the matrix P(x, e) by

solving the differential equation (2.12) with the initial condition
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(4.1) y(p) = 0.

To do this, we use the method of successive approximations. By vir-

tue of the Lemma of §3, we can construct, in this manner, a unique

solution ^P(x) which is 33-holomorphic in a subdomain £>i of Do which

contains 0 in its interior. Since dty(x)/dx is given by (3.4), the solu-

tion $(x) gives the desired matrix P(x, e). The matrix B(x, e) is deter-

mined by (2.8) and (2.9). This completes the proof of our theorem.
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