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In this paper we are concerned with the properties of the bounded

solutions of differential equations having the form

(E) x+fit)gix,x)=0.

Here we consider only solutions of (E) which are defined on some

ray [c, +°°), c^O (depending on the particular solution), and their

existence will be assumed without further mention.

An oscillatory solution xit), tE [c, + eo) of (E), is (by definition) a

solution such that for any t>c, there exists a h>t with x(/i) =0.

In the first section we give a theorem in which fit) is allowed to be

negative part of the time, and in the second section we give a criterion

in order that all bounded solutions of (E) oscillate.

1. We prove the following

Theorem 1. Consider (E) under the assumptions:

(i) /: 7—>R = (— oo, -f-oo),/= [t„, + co), i0 = 0, continuous on I, and

such that

f   t[pf+it) +f-(t)]dt = 4-oo,       for every u > 0,

where f+it)= max {fit), 0}, andf_it)=min {fit), 0};
(ii) g is defined and continuous on R2, xg(x, y)>0 for every

(x, y) EiR\{o})XR, and such that: to every pair of constants I, m with

0<l<m there corresponds a pair of constants L = Lif, m), M= Mil, m)

with 0 <L < | gix, y) \ < M for every (x, y) with I < \ x\ <m; then, if xit)

is a bounded solution of (E), it must be oscillatory or such that

lim inf | *(/) |   = 0.
«-.+ »

Proof. Suppose that there exists a bounded nonoscillatory solution

x(/), tE[h, +<*>), h = t0. Then, without any loss of generality, we

assume that x(0>0, tE [h, + °o). If lim inf(_+„x(i)>0, then, accord-

ing to (ii), there exists T — ti such thata<x(i) </3, and K<g(x, x) <L

for every tE [T, + eo), where a, f3 are two positive constants and K,

L are also positive constants depending on a, /3.
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Now consider the function F(t) =tx(t), tE[T, + °°); by differentia-

tion of F we obtain

(1) F(t) = x(t) - tf(t)g(x(t), x(t))

which by integration from T to t (t^T) gives

(2) F(t) = F(T) + x(t) - x(T) - f sf(s)g(x(s), x(s))ds.

Thus, from (2), because of the boundedness of x(t) and g(x(t), x(t)),

we get

F(l) ^ F(T) + a-fi-  f  sf+(s)g(x(s), x(s))ds

(3) -  f 'sf-(s)g(x(s), x(s))ds
J  rp

^ F(T) +a-fi-L[  s[(K/L)f+(s) +fo(s)]ds.

From (3) we obtain a contradiction, for it yields

(4) lim   F(t) = - oo,
t—+°o

i.e., there exists a constant M>0 such that

(5) x(t)<-M/t,       tE[Ti,+*>)

for some I\^T, which implies lim(.,+0Ox(i) = — oo. Since we have

supposed that x(t)>0, tE [to, + °°), the contradiction follows. Thus,

our assertion is true.

2. We establish

Theorem 2. Let the equation (E) be such that:

(i) f is defined and continuous on the interval /= [t0, + °°), <o = 0,

positive and such that

/,  +0O

tf(t)dt = + oo ;
h

(ii) g is defined and continuous on R2, and xg(x, y)>0 for every x ^0;

then every bounded solution of (E) is oscillatory.

Proof. Assume that there exists a bounded solution x(t) of (E)

which is positive on [tx, + oo), tx^h; then it is easy to see (by use of
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the fact that x(t) <0) that the derivative x(t) is a positive decreasing

function on [tx, + °°), so that x(t) is increasing on the same interval.

Moreover, since x(t) is bounded, we must have lim(_+cox(£) =0. Now

we find a lower bound for the function g(x(t), x(t)). Let X be the limit

of x(t) as t tends to infinity (0 <X < + oo); then if e is a fixed constant

less than g(\, 0), there exists a t2^tx such that

(6) g(X, 0) - e < g(x(t), x(t)) < g(X, 0) + e

for every /Si fe.

Thus, as in Theorem 1, we have

tx(t) ^ k -  f sf(s)g(x(s), x(s))ds

(7) A
SS k - (g(\, 0) - e) f  sf(s)ds

where k = tix(ti)—x(ti)+/\. From (7) we obtain limt-.+x, tx(t) = — oo,

contradicting the positivity of x(t). A similar argument can be used

in the case of an eventually negative solution. Thus, the proof is

complete.

Remark 1. An example of a function satisfying (ii) of Theorem 1

is the following: g(x, y) =x3(l + |y| /(l + |;y|)).

Remark 2. It is possible that the assumptions of Theorem 1 imply

that all bounded solutions of (E) are oscillatory, but we are unable to

prove it.

Remark 3. As a consequence of Theorem 2 we obtain the interest-

ing result that all solutions of the equation

(*) x + p(t)x = 0,       ( f     tp(t)dt = + oo)

with 0 <p(t) Ss 1/4/2, are unbounded, because it is well known that in

this case all solutions of (*) are nonoscillatory.

Remark 4. Theorem 2 improves the sufficiency part of a result of

Wong in [l ], who considered a special case of the function g(x, y), and

showed that the integral condition in (i) of Theorem 2, is necessary

and sufficient for all bounded solutions to oscillate.
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