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Introduction. The purpose of this paper is to present brief proofs of

many of the known linear inequalities involving the eigenvalues of

the sum of two hermitian matrices [l], [3], [6], [8] and [9]. We

derive quite easy proofs of the inequalities due to Lidskii [6] and [8]

to Amir-Moez [l] and to J. Hersch [3] and B. P. Zwahlen [9]. Proofs

of Lidskii's inequality appear in [4], [9] and [lO]. Our interest in

this very old problem arose from a study of a recent result of F. John

[5]. Lidskii's inequality immediately implies this result of F. John. In

fact, a slight strengthening of F. John's result is (trivially) equivalent

to the inequality of Lidskii.

1. Conservation of eigenvalues and a proof of Lidskii's inequality.

Let 2(A) be the set of all hermitian operators defined on a unitary

space A of dimension A. For A in 2(A), let aiA) = (oii, ■ ■ ■ , a at)

= (ail), ■ ■ ■ , a(A)) be the eigenvalues of A arranged in descending

order. If also B is in 2(A), we write a(5) = (Bi, ■■ ■ , pN), aiA+B)

= i"Yi, ■ • ■ , 7n) and ei, ■ ■ ■ , eN; fi, ■ ■ ■ , fN; gu • ■ ■ , gN for ortho-

normal subsets of X such that ^4e,- = a,-c,-, Bfi=f3ifi and iA+B)gt

= 7igi for l^i^N.

Theorem 1 (Wielandt). If 1 = ii<i2< • • ■ <in^N,then

(a) JZyih) = I>fe)+ £&•
j-i i— l y-i

By use of Muirhead's theorem one sees (cf. [8, p. 110]) that The-

orem 1 is equivalent to

(L) Lidskii's Inequality. The vector aiA +B) is in the convex hull

of the set {aiA)+aiB)P; P in SN}, where SN is the set of all N by N

permutation matrices.

We base our proof of Theorem 1 on the following well-known

Conservation Principle. Let A be in 2(A) and let Xbea subspace

of X of dimension N—1. Define A in 2(A) by requiring that iAy, y)

= iAy,y) for y in X. Write aiA) = (di, • • • , d(A—1)). Then

(1) ai^di^a2^ • • • ^d(A-l)^a(A).
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(2) If X contains ex, ■ ■ • , ek, then a.j = ajfor 1 ̂ j^k.

(3) If X contains ek, ■ ■ ■ , e^, then aj = aj-i for k^j^N.

Proof of Theorem 1. We use induction on N, noting that the

theorem is obvious if N = 1 or if ra = A^ so we may assume that 1, ra < N.

Case 1. iH<N. Let X be the subspace spanned by gx, ■ ■ ■ , gjv-i-

Let A and B be the restrictions of A and B to X, respectively. By

induction

i7&)^ ia(ij)+ ±fij.
3=1 3=1 j=l

The inequality (A) follows from (1) and (2) of the conservation

principle.

Case 2. 1 <ii. Let X be the subspace spanned by e2, ■ ■ • , e^- Let

A and B be defined as in Case 1. By induction

Z7fe-1) =S   lla(ij-l)+  £&.
3=1 3=1 3=1

The inequality (A) follows from (1) and (3) of the conservation

principle.

Case 3. ii = 1. Let S — {ii, ■ ■ ■ , i„} and let

T = {N + 1 - i;iES, 1 ^ i S N}.

Then N(£ T and by Case 1

Z (t>; iET)^2Z («••; i£ t) + 2Z ft-
3=1

Apply this inequality to —A, —B, reverse the sense, add 2Z(T»'i iES)

to both sides and use the additivity of the trace to get the inequality

(A).
We turn now to the recent results of F. John [5]. Let Rn be the set

of all 1 by N real vectors. For aERv and Q in 5jv, define

E(o-,Q) = { A in H(X) ■ a(A)Q in o-},

and, with F. John,

C(a) = f)(E(<r, Q);QE S„),      D(a) = \J(E(a, Q);QE SN).

Theorem 2 (F. John). If a is closed and convex, then C(a) is closed

and convex.

Proof. Since C(a), D(a) and E(a, Q) are all closed if a is closed, it

will suffice to prove
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(L') If a is convex, QESN, A EE(a, Q), BEC(a) andO^t^l, then
(tA + (l-t)B)EE(a, Q).

Proof. Applying (L) to tA and (l—t)B, we see thata(^ +(1 — t)B)

is in the convex hull of the set {ta(A) + (l-t)a(B)P; PESN}. By

hypothesis, a(A)Q and a(B)PQ are in a for all PESN. Because <r is

convex, a(tA + (l—t)B)Q is in a. This proves (L').

Not only does (L) directly imply (L') but conversely and equally

directly (L') implies (L). To see this, first note that one may add

arbitrary multiples of the identity map I of X onto X to A and B

without affecting the validity of (L). Hence we may assume that

trace A> trace 5 = 0. By (L), a(A+B)= a((l/2) (2 A)+ (1/2) (2 B)) is

in the convex hull of the set {2a(A), 2a(B)P;PESN}. Hence

(4) a(A + B) = 2sa(A) + 2(1 - s)fi

for O^s^l and fi in the convex hull of the set {a(B)P; PESN}.

Summing coordinates in (4), we see that s = l/2, a(A+B) =a(A)+0.

This proves (L).

2. Some inequalities of Amir-Moez. In this section we use (L)

and our conservation principle to give a very direct inductive proof

of the generalization of (L) due to Amir-Moez [l].

First let us introduce some convenient notation and terminology.

If (i): ii^ii^ ■■■ ^in is a monotone sequence of positive integers,

write (I): Ii<Ii< • ■ ■ </„ for the least properly monotone majorant

of (i). We call (7) the cover of (i) or we say that (I) covers (i). If also

(j):ji=*ji^ ■ ■ ■ ^jn is a monotone sequence of positive integers and

N isa positive integer, we call the pair (i), (j) N-admissible if and only

if n^N and k, = ia +j, — l^N — n+s for 1 ̂ 55= ra. When the pair (i),

(j) is A^-admissible, we write (i) o (j) = (K) for the cover of (k). Note

that In, Jn, K„^N which explains our term A7-admissible. Using the

notations of §1, we may now state the inequalities of Amir-Moez as

follows.

Theorem 3 (Amir-Moez). If N is a positive integer; (i), (j) is an

N-admissible pair with covers (I), (J), respectively, while (K) = (i) o (j),

then

(A-M) I7(K) ^  Z/s(/:) + ZftJ-.).
»—l 8=1 a=X

Proof. We use induction on N, noting that for N = 1 or for ra = N

the theorem is trivial and we assume 1, n<N.

Case 1.   Ix>l  (or Ji>l).  Let X be the subspace spanned by
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e2, ■ ■ ■, e;v and define A, Bon A as in the proof of (L). Since ii >1, (i')

= (ii — l, ■ ■ • , in — 1) is a monotone sequence of positive integers

whose cover is (/') = (7i —1, • • •, 7„ —1). Since i,>l for 1 ̂ s = n, we

easily see that ii'), (j) is an (A— Inadmissible pair and /„gJV-1.

Since *i>l, we see that (*) o fj) = (X') = (^i-l, ■ • • , An-1). By

induction we have

(5) IZyiK'*) ik !«(/.')+ Zft/.).
»=1 3—1 »-l

Our conservation principle yields 7(A.) ^7(AS — 1) =y(A/), d(7,')

= d(/,-l)=a(7.) and iJ(/.)^/3(/,) for lgsgw. Thus (A-M) for

(7), (J), (A) follows from (5).

Case 2. i'i =ji = 1. Define t as the greatest integer such that I, =s for

1 g 5 SS f and w as the greatest integer such that J, = s for 1 ̂  5 ̂  m. By

interchanging (i) and ij), as necessary, we may assume that u^t. We

see that t<n by means of the following

Remark. If we replace ia by if ^i, for lgs^K, then the pair ii'), ij)

is A-admissible if the pair ii), ij) is A-admissible. If K = (i') o ij), then

Ki ^K3 for lSs^n so that t(A/)^7(As) for l^sgw. If (/'), the

cover of (i') is the same as (7), then (A-M) for (/'). (/)> (A') immedi-

ately yields (A-M) for (7), (7), (A) = (i) o (j). Let us refer to this

process as irrelevant reduction of ii).

Now suppose that t = n. By irrelevant reduction of ii) we may re-

place ii) by *, = 1 for l^s^w. But then K, = Ja for l^sfgw and

(A-M) follows from (L). We may assume that t<n and ju+i>u + l so

that u+N+1 — Ju+i < N.

By irrelevant reduction of (i) and (j) we may assume that i, = 1 for

1—s^t and j, = 1 for l^s^u. Choose an A—1 dimensional subspace

A which contains gi, ■ ■ ■ , gu and/(7u+i), • • • ,/(A). Define A, B as

inCasel.Let (j') = C/i. ■ ' • ,ju,ju+i — l, ■ • ■ ,in — l).Since 7„+i — l >w

= /u, the cover of (/) is (/') = iJi, ■••,/«> Ju+i—1, • • •, /n—1). A

similar argument using also if+i>/+l if « = / shows that (A')

= (i) o (jv) = (Ai, • • • , Ku, Ku+i — 1, ■ ■ ■ , Kn — 1). We may assume

that In<N since i,£N — n+s + l—j, for l^s^n shows that 7„

^N+l—j„ so that In = N gives i„ = l, t = u = n and (A-M)

is a very special case of (L). By induction (A-M) holds for (7), (J')i

(A'). Using our conservation principle, we easily see that (A-M)

holds for (7), (7), (A). This completes the proof of Theorem 3.

3. The Hersch-Zwahlen inequalities. We conclude with a brief

proof of the inequalities recently derived by J. Hersch [3] and B. P.

Zwahlen [9].
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The statement of these inequalities is somewhat complicated.

Consider   (k) = {1 ^kx<k2< ■ ■ ■ <kn^N}    and   Q<px<pi< • • •

<pm = p; 0^qx<qi< • • • <<Z* = 2 with p+q = n, t = m or t = m — 1,

and  <7i = 0  only  if m = l   and  pi = p = n.  Let ^0 = g0 = 0,  p(m + l)

= q(t + l) =ra and k(n+s) =N+s for s>w. Define, with Zwahlen,

*', = k(s + qr) — qr        for pr < s g pT+x,        0 ^ r ^ m;

and

j, = k(s + p,+x) — pr+i        for qT < s g qT+i,        0 ^ r ^ t.

Theorem 4 (Hersch-Zwahlen). If the foregoing definitions hold,

then

(H-Z) £ 7(A.) £ £ ««.) + £ fi(j.).
s=l »=1 i-1

Proof. We begin by observing that the case qi = 0 is merely (A) in

its equivalent complementary form. As usual, if n — N, (H-Z) is an

equality. Hence we may assume that qi>0 and that n<N. We use

induction on N noting that the theorem is true for N—l. We define

v to be the greatest integer for which k(n — s + l)=N — s + 1 for

l^s^v. We may have v = 0 which occurs if and only if k(n) <N. We

define u to be the greatest integer for which ks=s for 1|s^m. We

may have u = 0 which occurs if and only if k(l) >1. Observe that

v+u^n^N— 1. The definition of u and Zwahlen's definitions of the

sequences (i) and (j) yield uniquely determined nonnegative integers

w and z such that u=w+z, i, = s for l^s^w andj, = s for lgs^z

while i(w + l)>w+l and j(z+l) >z + l. We may choose a subspace

Xof dimension N— 1 containing the vectors e\, • • • ,ew;/i, ■ ■ • ,/z, as

well as g(N—v + l), ■ ■ ■ , g(N). Define A, B, C as usual on X. If we

replace N by N — 1 and k, by k, — 1 tor u < s and use Zwahlen's defini-

tions as well as our inductive hypothesis, we obtain an inequality like

(H-Z) with the corresponding replacements. But, since a, = a, for

l^jgw and d(s — l)s^a, for w<s^n; fi, =fi, for 1 ̂ s^z and fi(s — 1)

^fi, for z<s^n; while 7,^7. for l^s^ra—tj and 7« = 7(5 — 1) for

n—v<s^n, (H-Z) follows from the corresponding inequality for A

and 5.
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