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1. Introduction. In the following x, y and z are variables in R, the

real numbers, and/is a real valued function. We will at times assume

that one or both of the following conditions hold:

(i) f(x, y, z) is continuous on 5= {(x, y, z)ERi'- a<x<b}.

(ii)' For any yx and yi and any a <xi <x2 <b, if the boundary value

problem

(1) y" = f(x, y, y'),       y(xx) = yx,       y(x2) = y2

has a solution on [xx, x2], then it has a solution which extends through-

out (a, b).

With these assumptions we are able to establish the following

theorem.

Theorem 1. // (i) and (ii)' hold, then each of the following are equiva-

lent:

(A) For any a<xx<Xi<b and any cf>EC2[xi, x2], d>"^f(x, d>, <j>')

is a necessary and sufficient condition for <p to be a subfunction on [xx, x2]

relative to solutions of (1).

(B) For any a<Xx<x2<b and any \pEC2[xi, x2], xp"gf(x, xp, \j/')

is a necessary and sufficient condition for xp to be a superfunction on

[xx, x2] relative to solutions of (1).

(C) For any a<Xx<x2<b and any solutions y and z of (1) on [xi, Xi]

with  y(xx)=z(xx)   and  y(x2)=z(x2),  it follows  that  y(x)=z(x) for

Xi^Xg Xi.

In a previous paper [3] it was shown that if (i), (ii), and (iii) hold

then (A) follows where (ii) and (iii) are the conditions:

(ii) For any yi and y2 and any a<Xi<x2<b the boundary value

problem as in (ii)' has a solution which extends throughout (a, b),

and any two solutions which agree at two distinct points are identical

throughout (a, b).

(iii) Solutions of initial value problems for (1) are unique.

We see then that the (C) implies (A) part of Theorem 1 in this

paper represents a strengthening of Theorems 1 and 2 in [3] since

the existence of solutions of boundary value problems and the unique-

ness of solutions to initial value problems are not explicitly hypothe-

sized in the author's Theorem 1.
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tributed materially to the organization and clarity of this paper.

2. Preliminary results. We begin with a lemma which is critical

for the ensuing proofs.

Lemma 1. Assume that fix, y, y') satisfies condition (i) and let

[c, d]Eia, b),(pEC2[c, d] and (p" = fix, </>, <£')• Then there exists a 5>0

such that for any [xi, x2]E[c, d], with OKXi — Xi^o, the boundary

value problem

(2) y" = fix, y, y'),       yixi) = 4>(xi),       y(x2) = d>ix2)

has a solution yEC2[xi, x2]; moreover, y(x)'=(p(x) on [xi, x2].

Proof. Define Fix, y, y') by

Fix, y, y') = fix, y, y')       for y ^ d>ix),

= fix, (bix), y') + y - d>ix)        for y < (bix).

The function Fix, y, y') is continuous for c 5= x Js d and \y\ +\y'\ < + °°.

Choose M=l+maxcsxsd |</>(x)|, N=l+maxCSXSj | </>'(*) | and let

Q = max{ | Fix,y,y')\ : c = x = d, \ y\   =~ 2M, \y'\   = 2N}.

If 5 = min{(8ikf/01'2, 2A/<2} then for any [*lf x2]E[c, d] with

0<x2—Xi'=d, the boundary value problem

(3) y" = Fix, y, y>),        yi%i) = ^Xi),        yix2) = *(*,)

has a solution yEC2[xi, x2] by Lemma 1 of [3].

We now claim that y(e) ^4>(x) for Xi^x^x2. If not then qb— y must

have a positive maximum say at Xo where Xi<Xo<x2. But then

y'ixo)=(p'ixo) and

4>"ixo) — y"(xo) = 4>"ix0) - fixo, (bixo), (b'ixo)) + d>ix0) - y(x0)

so

<t>"ix0) - y"ix0) ^ (bixo) - yixo) > 0

which contradicts having a maximum at Xo. Thus y(x)^(pix) for

xi=x^x2 and so, by the definition of Fix, y, y'), we see that y is a

solution to boundary value problem (2).

Lemma 2. If fix, y, y') satisfies (i) and (C); and (p, 5 are as in Lemma

1, then 4> is a subfunction, relative to solutions of iA), on every subinler-

val of [c, d] whose length does not exceed 5.

Proof. This follows readily from Lemma 1.
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Lemma 3. Assume that f(x, y, y') satisfies condition (i) and let

[c, d]E(a, b), xpEC2[c, d] and xp"gf(x, xp, xp'). Then there exists a

<r>0 such that for any [xi, Xi]E [c, d], with 0<Xi — xig<r, the boundary

value problem

(4) y" =f(x, y, y'),       y(xx) = \b(xx),       y(x2) = xP(x2)

has a solution yEC2[xi, xt]; moreover, y(x) S*P(x) on [xlt Xi].

Proof. The proof is similar to the proof of Lemma 1 so is omitted.

Lemma 4. Iff(x, y, y') satisfies (i) and (C); and xp, a are as in Lemma

3, then xp is a super function, relative to solutions of (1), on every subinter-

val of [c, d] whose length does not exceed a.

Proof. This follows readily from Lemma 3.

3. Proof of Theorem 1. It is easy to see that (A) implies (C) and

(B) implies (C). We will only show that (C) implies (A) since the

proof that (C) implies (B) is similar. The fact that a function d> which

is in C2[xi, Xi] and is a subfunction on [xx, Xi] relative to solutions of

(1) necessarily satisfies d>"^f(x, <b, <p'), when (i) holds, follows easily

from Lemma 3, or the proof may be found in Theorem 2 of [4] or

Theorem 6 of [l ]. For this reason we will consider only the sufficiency.

If 4>EC2[xx, Xi] and <p"'^f(x, d>, d>') but <b is not a subf unction on

[*i, x2] relative to solutions of (1), then there exists an interval

[c, d]E[xx, Xi] and a solution z of (1) with z(c)=<b(c), z(d)=<b(d)

and z(x) <<b(x) for c<x<d.

For each positive integer n we let P(n) be the proposition that

that there exists an interval [a„, &re]c[c, d] with 0<bn—an^d

— c — (n —1)5 (where 8 comes from Lemma 1) and a solution z„ of (1)

on [an, bn] such that zn(an) =<p(an), zn(bn) =<b(bn) and zn(x) <<b(x) tor

an<x<bn. We will show that under our assumption that <j> is not a

subfunction on [xx, Xi] relative to solutions of (1), it follows that P(n)

holds for each positive integer n. This gives a contradiction since it is

not possible to have 0<d— c — (n—1)5 for every positive integer n.

The fact that P(l) is true follows by letting ax = c, bx = d and 2i = z.

We assume that P(k) is true and will show that this implies P(k + 1)

is true. If bk — ak^d then we get a contradiction from Lemma 2 so we

suppose bk—ak>8. Let yi be the solution to the boundary value

problem

y" = /(*, y, y'),     y(a*) = *(«*),     y(ak + 8) = d>(ak + 8)

which exists on   [ak, ak+8] by Lemma 1. By condition  (ii)' this

boundary value problem has a solution which exists on (a, b) and by
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(C) this solution on (a, b) must agree with yi on [ak, ak+8] so we see

that yi is extendable as a solution of (1) to all of (a, b). If Pik + 1) is

not true then one may show that yi(x)3:</>(x) for ak^x^bk. To see

this first note that yi(x)^<£(x) on [ak, ak+8] by Lemma 1 and that

yi(bk)>(p(bk) by (C). Now we must have yi(x)^<£(x) on [a*..+ 5, bk]

or we violate the assumption that Pik + 1) is not true. lfbk — aK — d = 8

we observe that the solution y2 to the boundary value problem

y" = fix, y, y'),      yiak + 8) = *(<>» + 5),      y(bk) = <t>(bk)

which exists on [ajt + 5, bk] by Lemma 1 is extendable to all of (a, b)

just asyi was. We notice thaty2(x) ^d>ix) for ak + 8^x = bk by Lemma

1 and that y2(x):gyi(x) for ak + 8 = x = bk by (C). We now have

(pix)^y2ix)^yiix) for ak + 8=x = bk, yiiak + 8)=y2iak + 8)=4>iak + 8)

and y{ iak+8)=qb'iak+8). Using these properties and elementary

calculus it is not hard to show that y2 iak + 8) =y{ iak+8) and then

since yi and y2 are both solutions of (1), that y2" iak + 8) =y{' iak + 8).

But now condition (C) is violated since u defined by

uix) = yi(x)        for ak ^ x ^ ak + 8,

= y2ix)        for ak + 8 < x ^ bk

is a solution to the same boundary value problem that zk is, but u and

zk are not identical. We conclude that b<„■— ak — 8>8 and let y2 he the

solution to the boundary value problem

y" = fix, y, y'),        yiak + 8) = <Piak + 8),        yiak + 28) = 4>iak + 25)

which exists on [at+ 5, a^ + 25] by Lemma 1 and is extendable to all

of (a, b) just as yi was. Note that y2ix)'=(pix) for ak + 8=x = bk for

otherwise the function v defined by

vix) = yiix)        for ak ^ x ^ ak + 8,

= y2ix)        for ak + 8 < x ^ bk

is a solution of (1) that must satisfy v(bk)>(pibk), or (C) is violated,

and hence vix)'=(j>ix) for ak + 8=x = bk or else the assumption that

Pik + 1) is false is violated. Continuing in this way we construct

yz, y4> • • • until we have worked our way across the interval [ak, bk]

and obtained a contradiction. Thus P(k + 1) is true as claimed but

this gives a contradiction also, so the proof is complete.

4. Further results.

Theorem 2. If condition (ii)' is omitted in the hypotheses of Theorem

1, then the conclusion remains valid provided the condition x2—Xi — 8

is added in each of (A), (B) and (C).
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Proof. The proof is the same as that of Theorem 1 except for the

sufficiency of <f>"^/(x, <j>, <b') for 0 to be a subf unction, relative to

solutions of (1) on [xi, Xi] with x2 — Xi ̂  5 when (C) is assumed to hold.

This now follows from Lemma 2.

We now consider a condition which is weaker than (ii)':

(ii)" for any yi and y2 and any a <xi <x2 <b, if the boundary value

problem as in (ii)' has a solution on [xi, x2], then it has a solution y

which extends to the right until x = b or to Xo < b where lim sup^s,,- y (x)

= + oo or lim inix-,*,- y(x) = — » and similarly to the left.

Theorem 3. // (i) and (ii)" hold then the statements (A), (B) and

(C) 0/ Theorem 1 are equivalent.

Proof. The proof is nearly identical to the proof of Theorem 1,

so it is omitted.

Corollary. Iff satisfies (i) but does not depend on z then the state-

ments (A), (B) and (C) of Theorem 1 are equivalent.

Proof. Iff satisfies (i) but does not depend on z then one can show,

using Theorem 3.1 [2, p. 12], that (ii)" holds.

Definition. For any a<xi<x2<b, a function d>EC2[xx, x2] will

be called a lower solution of (1) on [xi, Xi] in case 0"^/(x, d>, <b') for

xE [xx, Xi}. Similarly, xpEC2 [xx, Xi] will be called an upper solution of

(1) on [xx, Xi] in case xp" g/(x, xp, xp') for xE [xx, Xi],

Theorem 4. // (i) and either (ii)' or (ii)" hold then the following are

equivalent:

(A)' For any a<xx<x2<b and any <bEC2[xx, x2], 0"2;/(x, <f>, <$>')

is a necessary and sufficient condition for 4> to be a subfunction on

[xx, x2] relative to upper solutions of (1).

(B)' For any a<xx<x2<b and any xpEC2[xx, x2], xp" <^f(x, xp, xp')

is a necessary and sufficient condition for xp to be a superfunction on

[xx, x2] relative to lower solutions of (1).

(C)  For any a<xx<x2<b and any solutions y and z of (1) on

[xx, x2] with y(xx)=z(xx) and y(x2)=z(x2), it follows that y(x)=z(x)

for xi^x^x2.

Proof. The only part of the proof which differs from the proof of

Theorem 1 is the sufficiency of <p" ̂  f(x, ab, </>') for d> to be a subfunction

on [xi, Xi] relative to upper solutions of (1) when (C) is assumed to

hold. We will show this assuming (ii)' holds since the proof when

(ii)" holds is similar.

If <f>EC2[xx, Xi] and <b"^f(x, d>, d>') but <b is not a subfunction on

[xi, X2] relative to upper solutions of (1), then there exists an interval
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[c, d]E [xi, x2] and an upper solution yp of (1) with \pic) =d>ic), \p(i)

=qbid) and i^(x) <<tj(x) for c<x<d.

For each positive integer n we let Pin) be the proposition that there

exists an interval [an, bn]E[c, d] with 0<&„ — an^d — c — (n — l)n

(where 77 = min{8, a} and 5, a come from Lemmas 1 and 3) and an

upper solution zn of (1) on [an, bn] such that z„(a„) =</>(<zn), z„(&„)

= (p(bn) and z„(x)<</>(x) for a„<x<6„. We will show that under our

assumption that (p is not a subfunction on [x\, x2] relative to upper

solutions of (1), it follows that P(n) holds for each positive integer n.

This gives a contradiction since it is not possible to have 0<d — c

— in —1)?7 for every positive integer n.

The fact that P(l) is true follows by letting ai = c, bi = d and

Zi=ip. We assume that P(k) is true and will show that this implies

Pik + 1) is true. ltbk — ak^r) then we get a contradiction from Lemmas

1, 3 and property (C) so we suppose bk—ak>n. From this point on,

the proof proceeds as in Theorem 1 except that n replaces 8 and in

several places where (C) is cited as the reason for something being

true, one needs to use either (A) or (B) of Theorem 1 which are each

equivalent to (C), under our hypotheses, by Theorem 1 (Theorem 3

in the case where (ii)" is assumed to hold).

These results raise the question of whether the conclusion of The-

orem 1 is valid if condition (ii)' is omitted from the hypotheses

entirely. The author does not know the answer to this conjecture;

however, it is not hard to see that the function fix, y, z) in any

counterexample must be nonlinear in y or z, cannot be strictly in-

creasing in y for each fixed x and z, must depend on z and cannot

satisfy a so called "Nagumo condition" as described, for example, in

Lemma 5.1 [2, p. 428].
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