
COMPACTIFICATIONS OF w-SPACE BY AN ARC
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1. Introduction. We ask how many different spaces X we obtain by

compactifying w-space R" by an arc A. (We are not asking how many

distinct pairs (X, A) exist.) For n large, most certainly uncountably

many distinct X ought to exist. However, if we require that A be

fitted nicely to R", the question becomes more interesting and perhaps

harder. (On the other hand, if X is required to be a topological mani-

fold, then it must be a sphere in every dimension where the topologi-

cal Poincare conjecture is true.) We solve one aspect of this problem

in the following form.

Theorem. For each n = 4, there exist uncountably many topologically

distinct cohomology (or generalized) n-manifolds over integers Z which

are obtained from Rn by compactifying by an arc.

By [6, Chapter IX], X is necessarily «-sphere for n = \ and 2, the

question is left open only for the case n = 3. The proof makes a strong

use of the method of [l] and constructions of [l] and [2]. As a corol-

lary to [l], we also obtain uncountably many generalized w-cells,

w^4, which are AR but whose boundaries are not 1-LC.

2. Contractible manifolds with boundary. Let A denote the collec-

tion of all sequences of the form

{ax}, {ax, a2}, {ax, a2, a»), ■ • • , {au aiy • • • , ak], {au ■ • •},

where ai<o2<a3< • • • are all positive integers. The •tth term of

each XGA will be denoted by \(i). We emphasize the following three

properties of A:

(1) For any integer i and XGA there exist infinitely many integers

i = ix<i2< • ■ ■  such that \(iq) =\(i).

(2) If X, X'GA and Xs-^X', then there is a term in one of X and X'

which does not appear as terms in the other.

(3) The set A is uncountable.

Let n be a fixed integer greater than 3. Let Mi, M2, • • • be com-

pact contractible w-manifolds such that 7Ti(Bd Mf) are pairwise non-

isomorphic, each 7Ti(Bd Mf) ^ 1 and no 7Ti(Bd Mi) is isomorphic to the

free product of two nontrivial groups. The existence of such manifolds

has been shown in [l], [2]. Further we assume that MiX [0, l] is an

Received by the editors May 10, 1967.

1 Research supported in part by NSF Grant GP 5868.

1133



1134 K. W. KWUN [October

(w-f-l)-cell. (See [l], [2].) For each XGA, consider the contractible

w-manifolds

Mx = ifX(i>#Afx(2)# • • • ,

the infinite connected sum as defined in [l].

3. Compactifications of R" by an arc. For each XGA, construct the

space X\ which is obtained as follows. Let N\ be the one-point com-

pactification of M\ by a point p\. XxCAx X [0, l] is defined to be the

set

[(Bd Mx) W {px}] X [0, 1] = Ah X {0, l}.

Proposition 1. Xx is a spherelike cohomology manifold over Z.

Proof. By [6], Bd Mx^J{px\ is a spherelike («-l)-cm. (cm stands

for cohomology manifold over any principal ideal domain. Hence-

forth, the mention of the coefficient domains will be omitted.) Now

if we take two copies of Mx and attach them along the boundaries,

we obtain a space homeomorphic to Rn. (Recall Af,X[0, l] is an

(re-f-l)-cell.) We write this fact as 2Mx = RH. Compactify 2MX by the

point px- Then Bd M\{J{p\}d re-sphere which is the one-point

compactification of 2Mx = Rn. The closure of either complementary

domain is homeomorphic to N\. By [7, Theorem 9.1, p. 312] or

[5, Theorem 2, p. 12] and [3, p. 434], Nx is a generalized re-cell in the

sense of [7] and [3]. Consequently (see [3]), NxX [0, l] is a general-

ized (re-f-l)-cell and Xx = Bd(AxX [0, l]) is a spherelike re-cm.

Now let Ax be the arc in Xx corresponding to pxX[0, l].

Proposition 2. Xx—Ax is homeomorphic to Rn.

Proof. Since MtX [0, l] is an (w + l)-cell, MxX [0, l] is an infinite

connected sum of (« + l)-cells and therefore is homeomorphic to

FnX[0, 1). On the other hand Xx— Ax is homeomorphic to

Bd (NxX [0, l]-Ax). Hence it is homeomorphic to Bd (RnX [0, 1))
= F"X0.

In order to prove the theorem in the Introduction, it suffices to

show that Xx and X'x are distinct if X?^X'.

4. Proof that X\ and Xx are not homeomorphic.

Proposition 3. ^4xCXx is precisely the set of paints of Xx at which

Xx is not locally euclidean.

Proof. We observe that Ax is not locally 1-connected at px in the

sense of homotopy. Hence Xx is not locally 1-connected at any in-
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terior point of A\. Hence X\ is not locally euclidean at any point

of Ax.
In view of Proposition 3, it suffices to show there is no homeo-

morphism h of (X)!, A{ ) onto (X\, A\).

Proposition 4. //X?^X', there is no homeomorphism h of (X{, A{)

onX.o(Xi,A->).

Proof. We use a simpler version of an argument in [l]. Because of

a difference in situation (for instance, we do not have here group

systems in the sense of [l ]) we will reproduce a certain argument of

[l ] to show that such an argument in fact goes through in our present

case. However, the reader's familiarity with [l] is assumed through-

out. Suppose there exists such a homeomorphism h.

Let

Ui = Bd iVx - (Mxu) # Mxm # ' • • # ^x<.-i)).

Let Gi be an abstract group isomorphic to 7n(Bd Mx^). With suitably

chosen base points, we may write

n(Ui) = Gi*Gi+i* ■ ■ ■ ,

the infinite free product, where Ui = U{—P\. In order to avoid con-

fusion, GjEirx(Ui) will be denoted by G). Though it is impossible

that all iri(Ui) have a common base point, it is nevertheless possible

to have a homomorphism of Trx(U'i+l,xi+i)—yirx(Ui ,Xi) byirx(U'i+1Xi+x)

—*TTx(Ui, xi+x)—>TTx(Ui, Xi) where the first homomorphism is induced

by the inclusion and the second one by a path in Ui connecting x»

and xi+l. See [l ]. This way we define homomorphisms

*ri(*74i)->*■<(#/),

or more generally,

irx(U<+lc)^TTx(Ui).

Under the latter homomorphism, G]+t maps isomorphically onto

Gj. See [l, p. 38].

Let a=(px, 1/2)G^x and Pi=UiX(l/2-l/2i, 1/2 + 1/20- It is
possible to identify

1Tx(Pi)   = Gi * Gi+l * •  •  •

and define homomorphisms
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where Pj =Pj — Ax just as for Uis. Let bE.A{ be such that h(b)=a

and QxQ2 • • • be a sequence of neighborhoods of b having the same

relation to b as Pi, P2, ■ ■ ■ do to a.

Let Qi=h(Qj)-Ax. Then irx(Qj) = Fy*Fy+1* ■ ■ ■ , where

Fk~Tx(Bd Mi{k)). Find integers j, k, s, t such that P.OQ/DP/

DQ'iDPi!. As in [l], it is possible to find homomorphisms

/ k k

TTl(Pk)   =   Gk * Gk+1 *   •   •   •

If
*i(e'i) = f! * f!+i * • • •

ig
vx(Pj) — Gi * G,+i * • • •

if
tx(Q'.) = F's * f'+, * • • •

such that gf is the monomorphism we defined above up to a conjugacy

automorphism of 7Ti(P/) and f'g is the monomorphism similarly

definable for Q's up to a conjugacy automorphism of ttx(Q's).

Without loss of generality, we may suppose that G* is not isomor-

phic to any Fm. The bar above homomorphisms will denote appropri-

ate restrictions. Since G\ is not a free product of two nontrivial groups,

by Kurosh's subgroup theorem [3], f(G\) is a conjugate of some sub-

group of some Flm. Then since gf(G%) is a conjugate of G)., g(Fi) is a

conjugate of G\ we have

Gk —* conjugate of Fm —> conjugate of Gk.

Since /, f are monomorphisms and gf is an isomorphism, f is an iso-

morphism. Thus Gl^iFm, a contradiction.

5. Some generalized re-cells. Consider AxX[0, 1]. If we shrink

Ax to a point, we obtain an (re + l)-cell. In this (w-(-l)-cell, the subset

corresponding to AxXO sits as a strong deformation retract. Hence

Ax is an AR (absolute retract). This leads to

Corollary. For each re § 4, there exist uncountably many generalized

re-cells Ax which are AR but whose boundaries are not l-LC.

Remark. Ax is never a cartesian factor of a cell. If Ax X C is a cell,

Bd Ax X Int C would be an open subset of a sphere and Bd Ax would

be locally contractible.
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