COMPACTIFICATIONS OF n-SPACE BY AN ARC

KYUNG WHAN KWUN1

1. **Introduction.** We ask how many different spaces X we obtain by compactifying n-space R^n by an arc A. (We are not asking how many distinct pairs (X, A) exist.) For n large, most certainly uncountably many distinct X ought to exist. However, if we require that A be fitted nicely to R^n , the question becomes more interesting and perhaps harder. (On the other hand, if X is required to be a topological manifold, then it must be a sphere in every dimension where the topological Poincaré conjecture is true.) We solve one aspect of this problem in the following form.

THEOREM. For each $n \ge 4$, there exist uncountably many topologically distinct cohomology (or generalized) n-manifolds over integers Z which are obtained from \mathbb{R}^n by compactifying by an arc.

By [6, Chapter IX], X is necessarily n-sphere for n=1 and 2, the question is left open only for the case n=3. The proof makes a strong use of the method of [1] and constructions of [1] and [2]. As a corollary to [1], we also obtain uncountably many generalized n-cells, $n \ge 4$, which are AR but whose boundaries are not 1-LC.

2. Contractible manifolds with boundary. Let Λ denote the collection of all sequences of the form

$$\{a_1\}, \{a_1, a_2\}, \{a_1, a_2, a_3\}, \cdots, \{a_1, a_2, \cdots, a_k\}, \{a_1, \cdots\},$$

where $a_1 < a_2 < a_3 < \cdots$ are all positive integers. The *i*th term of each $\lambda \in \Lambda$ will be denoted by $\lambda(i)$. We emphasize the following three properties of Λ :

- (1) For any integer i and $\lambda \in \Lambda$ there exist infinitely many integers $i = i_1 < i_2 < \cdots$ such that $\lambda(i_q) = \lambda(i)$.
- (2) If λ , $\lambda' \in \Lambda$ and $\lambda \neq \lambda'$, then there is a term in one of λ and λ' which does not appear as terms in the other.
 - (3) The set Λ is uncountable.

Let n be a fixed integer greater than 3. Let M_1, M_2, \cdots be compact contractible n-manifolds such that $\pi_1(\operatorname{Bd} M_i)$ are pairwise non-isomorphic, each $\pi_1(\operatorname{Bd} M_i) \neq 1$ and no $\pi_1(\operatorname{Bd} M_i)$ is isomorphic to the free product of two nontrivial groups. The existence of such manifolds has been shown in [1], [2]. Further we assume that $M_i \times [0, 1]$ is an

Received by the editors May 10, 1967.

¹ Research supported in part by NSF Grant GP 5868.

(n+1)-cell. (See [1], [2].) For each $\lambda \in \Lambda$, consider the contractible n-manifolds

$$M_{\lambda} = M_{\lambda(1)} \# M_{\lambda(2)} \# \cdots,$$

the infinite connected sum as defined in [1].

3. Compactifications of R^n by an arc. For each $\lambda \in \Lambda$, construct the space X_{λ} which is obtained as follows. Let N_{λ} be the one-point compactification of M_{λ} by a point p_{λ} . $X_{\lambda} \subset N_{\lambda} \times [0, 1]$ is defined to be the set

$$[(\operatorname{Bd} M_{\lambda}) \cup \{p_{\lambda}\}] \times [0, 1] = N_{\lambda} \times \{0, 1\}.$$

Proposition 1. X_{λ} is a spherelike cohomology manifold over Z.

PROOF. By [6], Bd $M_{\lambda} \cup \{p_{\lambda}\}$ is a spherelike (n-1)-cm. (cm stands for cohomology manifold over any principal ideal domain. Henceforth, the mention of the coefficient domains will be omitted.) Now if we take two copies of M_{λ} and attach them along the boundaries, we obtain a space homeomorphic to R^n . (Recall $M_i \times [0, 1]$ is an (n+1)-cell.) We write this fact as $2M_{\lambda} = R^n$. Compactify $2M_{\lambda}$ by the point p_{λ} . Then Bd $M_{\lambda} \cup \{p_{\lambda}\} \subset n$ -sphere which is the one-point compactification of $2M_{\lambda} = R^n$. The closure of either complementary domain is homeomorphic to N_{λ} . By [7, Theorem 9.1, p. 312] or [5, Theorem 2, p. 12] and [3, p. 434], N_{λ} is a generalized n-cell in the sense of [7] and [3]. Consequently (see [3]), $N_{\lambda} \times [0, 1]$ is a generalized (n+1)-cell and $X_{\lambda} = \text{Bd}(N_{\lambda} \times [0, 1])$ is a spherelike n-cm.

Now let A_{λ} be the arc in X_{λ} corresponding to $p_{\lambda} \times [0, 1]$.

PROPOSITION 2. $X_{\lambda} - A_{\lambda}$ is homeomorphic to \mathbb{R}^n .

PROOF. Since $M_i \times [0, 1]$ is an (n+1)-cell, $M_\lambda \times [0, 1]$ is an infinite connected sum of (n+1)-cells and therefore is homeomorphic to $R^n \times [0, 1)$. On the other hand $X_\lambda - A_\lambda$ is homeomorphic to Bd $(N_\lambda \times [0, 1] - A_\lambda)$. Hence it is homeomorphic to Bd $(R^n \times [0, 1)) = R^n \times 0$.

In order to prove the theorem in the Introduction, it suffices to show that X_{λ} and X'_{λ} are distinct if $\lambda \neq \lambda'$.

4. Proof that X_{λ} and X'_{λ} are not homeomorphic.

PROPOSITION 3. $A_{\lambda} \subset X_{\lambda}$ is precisely the set of points of X_{λ} at which X_{λ} is not locally euclidean.

PROOF. We observe that N_{λ} is not locally 1-connected at p_{λ} in the sense of homotopy. Hence X_{λ} is not locally 1-connected at any in-

terior point of A_{λ} . Hence X_{λ} is not locally euclidean at any point of A_{λ} .

In view of Proposition 3, it suffices to show there is no homeomorphism h of $(X_{\lambda}', A_{\lambda}')$ onto $(X_{\lambda}, A_{\lambda})$.

PROPOSITION 4. If $\lambda \neq \lambda'$, there is no homeomorphism h of $(X_{\lambda'}, A_{\lambda'})$ onto $(X_{\lambda}, A_{\lambda})$.

PROOF. We use a simpler version of an argument in [1]. Because of a difference in situation (for instance, we do not have here group systems in the sense of [1]) we will reproduce a certain argument of [1] to show that such an argument in fact goes through in our present case. However, the reader's familiarity with [1] is assumed throughout. Suppose there exists such a homeomorphism h.

Let

$$U_{i} = \operatorname{Bd} N_{\lambda} - (M_{\lambda(1)} \# M_{\lambda(2)} \# \cdots \# M_{\lambda(i-1)}).$$

Let G_i be an abstract group isomorphic to $\pi_1(\operatorname{Bd} M_{\lambda(i)})$. With suitably chosen base points, we may write

$$\pi_1(U_i') = G_i * G_{i+1} * \cdot \cdot \cdot ,$$

the infinite free product, where $U_i' = U_i - P_\lambda$. In order to avoid confusion, $G_j \subset \pi_1(U_i')$ will be denoted by G_j^i . Though it is impossible that all $\pi_1(U_i')$ have a common base point, it is nevertheless possible to have a homomorphism of $\pi_1(U_{i+1}', x_{i+1}) \rightarrow \pi_1(U_i', x_i)$ by $\pi_1(U_{i+1}' X_{i+1}) \rightarrow \pi_1(U_i', x_{i+1}) \rightarrow \pi_1(U_i', x_i)$ where the first homomorphism is induced by the inclusion and the second one by a path in U_i' connecting x_i and x_{i+1} . See [1]. This way we define homomorphisms

$$\pi_1(U'_{i+1}) \rightarrow \pi_1(U'_i),$$

or more generally,

$$\pi_1(U'_{i+k}) \longrightarrow \pi_1(U'_i).$$

Under the latter homomorphism, G_j^{i+k} maps isomorphically onto G_j^i . See [1, p. 38].

Let $a = (p_{\lambda}, 1/2) \in A_{\lambda}$ and $P_i = U_i \times (1/2 - 1/2^i, 1/2 + 1/2^i)$. It is possible to identify

$$\pi_1(P_i') = G_i^i * G_{i+1}^i * \cdots$$

and define homomorphisms

$$\pi_1(P'_{i+k}) \rightarrow \pi_1(P'_i),$$

where $P'_j = P_j - A_\lambda$ just as for U'_i 's. Let $b \in A'_\lambda$ be such that h(b) = a and $Q_1Q_2 \cdots$ be a sequence of neighborhoods of b having the same relation to b as P_1, P_2, \cdots do to a.

Let $Q'_j = h(Q_j) - A_{\lambda}$. Then $\pi_1(Q'_j) = F_j * F_{j+1} * \cdots$, where $F_k \simeq \pi_1(\text{Bd } M'_{\lambda(k)})$. Find integers j, k, s, t such that $P'_i \supset Q'_i \supset P'_j \supset Q'_i \supset P'_k$. As in [1], it is possible to find homomorphisms

$$\pi_{1}(P'_{k}) = G^{k}_{k} * G^{k}_{k+1} * \cdots$$

$$\downarrow f$$

$$\pi_{1}(Q'_{t}) = F^{t}_{t} * F^{t}_{t+1} * \cdots$$

$$\downarrow g$$

$$\pi_{1}(P'_{j}) = G^{i}_{t} * G^{i}_{t+1} * \cdots$$

$$\downarrow f'$$

$$\pi_{1}(Q'_{s}) = F^{s}_{s} * F^{s}_{s+1} * \cdots$$

such that gf is the monomorphism we defined above up to a conjugacy automorphism of $\pi_1(P'_j)$ and f'g is the monomorphism similarly definable for Q's up to a conjugacy automorphism of $\pi_1(Q's)$.

Without loss of generality, we may suppose that G_k^k is not isomorphic to any F_m . The bar above homomorphisms will denote appropriate restrictions. Since G_k^k is not a free product of two nontrivial groups, by Kurosh's subgroup theorem [3], $f(G_k^k)$ is a conjugate of some subgroup of some F_m^i . Then since $gf(G_k^k)$ is a conjugate of G_k^i , $g(F_m^i)$ is a conjugate of G_k^i we have

$$G_k^k \xrightarrow{\bar{f}} \text{conjugate of } F_m^t \xrightarrow{\bar{g}} \text{conjugate of } G_k^i.$$

Since \bar{f} , \bar{g} are monomorphisms and $\bar{g}\bar{f}$ is an isomorphism, \bar{f} is an isomorphism. Thus $G_k^k \simeq F_m$, a contradiction.

5. Some generalized *n*-cells. Consider $N_{\lambda} \times [0, 1]$. If we shrink A_{λ} to a point, we obtain an (n+1)-cell. In this (n+1)-cell, the subset corresponding to $N_{\lambda} \times 0$ sits as a strong deformation retract. Hence N_{λ} is an AR (absolute retract). This leads to

COROLLARY. For each $n \ge 4$, there exist uncountably many generalized n-cells N_{λ} which are AR but whose boundaries are not 1-LC.

REMARK. N_{λ} is never a cartesian factor of a cell. If $N_{\lambda} \times C$ is a cell, Bd $N_{\lambda} \times I$ nt C would be an open subset of a sphere and Bd N_{λ} would be locally contractible.

REFERENCES

- 1. M. L. Curtis and K. W. Kwun, Infinite sums of manifolds, Topology 3 (1965), 31-42.
- 2. L. C. Glaser, Uncountably many contractible open 4-manifolds, Topology 6 (1967), 37-42.
- 3. K. W. Kwun and Frank Raymond, Factors of cubes, Amer. J. Math. 84 (1962), 433-440.
 - 4. A. G. Kurosh, The theory of groups, Vol. II, Chelsea, New York, 1956.
- 5. Frank Raymond, Separation and union theorems for generalized manifolds with boundary, Michigan Math. J. 7 (1960), 7-21.
- 6. ——, The end point compactification of manifolds, Pacific J. Math. 10 (1960), 947-963.
- 7. R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Publ. Vol. 32, Amer. Math. Soc., Providence, R. I., 1949.

MICHIGAN STATE UNIVERSITY