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Let X be a real inner product space of dimension at least three and

let M be a 2-dimensional subspace of X. For a vector u in X but not

in M, let v be the vector in M closest to u. It is easily seen that (i) if

v = 0, then all of the vectors of norm 1 in M are equidistant from u

and (ii) if v5^0 and w= \v\~h, then of all the vectors of norm 1 in M

w is the closest to u. The purpose of this paper is to show that each

of these properties characterize those normed linear spaces which are

inner product spaces. (For a survey of such results, see [3, pp. 115-

121].)
Throughout, we let E denote real Euclidean 3-space. Our proofs

are based on the following two characterizations of ellipsoids in E.

Theorem A is due to G. Birkhoff [l]. Theorem B is due to Marchaud

[4] and generalizes a result due to Blaschke [2, pp. 157-159].

(A) Let K be a compact convex body in E with bounding surface 5.

Suppose there exists a point 0 interior to K satisfying: for any line m

through 0 and point P in mC\S, if M is a plane through 0 so that its

translate through P supports K, then for skew cylindrical coordinates

(r, 0, z) with m the line r = 0 and M the plane 2 = 0, the equation of S is of

the form r =f(z) ■ g(0). Then K is an ellipsoid.

(B) Let K be a compact convex body in E with bounding surface S

satisfying: for every direction d in E, there exists a corresponding plane

Ma such that the cylinder in the direction d generated by the plane curve

SC\Md circumscribes K. Then K is an ellipsoid.

Theorem. Let X be a real normed linear space of dimension at least

three. If X satisfies either condition (1) or (2) below, then X is an inner

product space.

(1) For every 2-dimensional subspace M of X and vector u not in M

for which \u\ =min {\u — w\ : w in M], we have \u — w\ = \ u — w'\ for

all w and w' in M with \w\ =\ w'\ = 1.

(2) For every 2-dimensional subspace M of X and vector u not in

M for which there exists a vector v in M, v 9* 0, satisfying \ u — v \

= min {I u — w\ : w in M\, we have

I u — I v\~h I   = min{ \u — w \'.win M, \w\  =l}.
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Proof. It suffices to show that for any 3-dimensional subspace Y

of X and any one-to-one linear mapping of Y onto E, the image K of

the unit ball in Fis an ellipsoid (cf. [3]). For simplicity, we shall as-

sume that Y is E. The first of the above conclusions follows from

Theorem A and the second from Theorem B. The arguments are

similar and we furnish only the latter.

Given a direction d, let m be the line through 0 (the origin) in the

direction d. Let N be any plane containing m, let re be a line in N

parallel to m which supports KT\N, and let x be any point of KC\n.

Let N' be a plane parallel to N which supports K and let y be any

point of KC\N'. By the symmetry of K, the plane N" parallel to N

and containing — y will also support K. We wish to show that the

2-dimensional subspace M of E spanned by x and y has the desired

property of Ma in (B). Thus, for 5 = boundary K, we need to show

that for any point z in SC\M, the line p through z parallel to m sup-

ports K. Suppose z = ax+by and \z\ =1. Ifa = 0orZ> = 0, then 2= +x

or +y and it is clear that p has the desired property. Assume a, by^O;

by the symmetry of K, we need only consider o>0. Let u = (l/2)x

- (b/2a)y and let

Kz = {w: w in E, \ w — u |   = (l/2a)}.

If T is the mapping in E defined by T(w) = (l/2a)w+u, then F(0) =u,

T(K)=Kz and T(z)=x. Since T is a magnification followed by a

translation to show that p supports K at z, it suffices to show that n

supports Kz at x.

We note that the ball centered at u of radius | b\ /2a is supported

by N at v = (\/2)x. Thus, v is in Kz and by condition (2), \u— x\

= min {|w— w\ :w in N, \w\ =l}. Suppose re does not support Kz.

Then there must be a point Wo common to re and i(Kz), the interior

of Kz. It follows that all points of the segment [wo, v], except possibly

v, belong to i(Kz). But the segment [w0, v] must contain a vector Wx

of norm 1. We then have | u— wx\ < | u—x\, a contradiction. Thus, re

supports Kz at x and our conclusion follows.
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