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Abstract. Several theorems are known for extending consistent

families of measures to an inverse limit or product space [l]. In this

paper the notion of a consistent family of measures is generalized so

that, as with general product measures [2], the spaces are not re-

quired to be of unit measure or even cr-finite. The general extension

problem may be separated into two parts, from finite to countable

product spaces and from countable to uncountable product spaces.

The first of these is discussed in [3]. The present paper concentrates

on the second. The ultimate virtual identity of sets is defined and

used as a key part of the generalization and nilsets similar to those

of general product measures [2] are introduced to assure the measur-

ability of the fundamental covering family. To exemplify the exten-

sion process, it is applied to product measures to obtain a general

product measure. The paper is presented in terms of outer measures

and Caratheodory measurability; however, some of the implications

in terms of measure algebras should be obvious.

Introduction. An uncountable product space X = XI.gr Xt is given

with a family 3D of countable subsets of the index set /. To each such

subset t £ 2D there is an associated outer measure yur on the countable

product space XT = XTier ^<- How the measures fj.r are obtained is

not of interest here, but to keep the complete extension problem in

mind we might think that juT is obtained as in [3] by extending a

regular conditional measure system onto Xr. The problem we are

concerned with here is that of stipulating conditions on the system

of measures juT that allow their extension to an outer measure n on X

having properties reflecting their own.

To proceed with the problem we need to agree on some notation.

If A (ZX and a is any subset of /, let Aa be the projection of A onto

the space X", and if aQX" let a* be the cylinder in X over a. The sym-

metric difference between two sets A and B will be denoted by A A-B,

and for t £ 2D, its complement I—r relative to I will be denoted by t'.

The family 2D is said to be comprehensive when each countable

subset a of I is contained in some element r of 2D (i.e. erCr£2D). In

the remainder of the paper we assume that 2D is comprehensive.
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1. The covering family. The existence of the covering family

% described below requires that the measures /zT be rather congenially

related. It is in this definition that the notion of a consistent family

of measures is being generalized. To give the definition, we must first

introduce two families of sets, the first of which is a traditional part

of the extension process and the second of which is reminiscent of

product measures. For t£2> let 3TCr= {^dXT: /3 is Caratheodory

measurable with respect to fir} and

(BT =  <|S C XT': 13 = II Pi where /3,- C X4 for each i £ r', and
V lEr'

(a X $)„ £ 3TC<r for each a £ 9IlT and each o- £ 3D such that r C <r\ ■

For a covering family % we require a family of subsets of X such that

for each ^4£5 there exists r£3D with A = aX|3 for some a£9TCT and

/3£(Br, and ^(yU) =Mt(«) whenever o-£2D and rCff. (Note here, as a

consequence of the definition of (BT, that also yl„£9Tl„.) Further re-

strictions will subsequently be placed on g.

In the above, |8 is in some sense a set of unit measure relative to a

and A is the analogue of a classical cylinder set. On % we can now

define a function fi by means of ix{A) = Mt(«) where A = aXj3, a£3TlT,

|3£(Br, x£2D, and n„{A„) =Mt(«) whenever cr£2D and r£<7. Using /n

as a gauge and § as a covering family, we generate an outer measure

"i7 on X by taking ^(^1), iC^t to be the infimum of numbers of the

form Sbgg m(-B) where g is a countable subfamily of % which covers

A. We come now to our first

Theorem 1.1. If A £g then ^(A) =n(A).

Proof. If g is a countable subfamily of % such that ^4Cllg, then

for each B £gVJ {A } let tb be such a member of 3D that fi(B) =hTb{BTb)

and let a be such a member of 3D that

U     rB £ <j.
BeSUU)

Thus m(S) =m*(£,) for each B£gU{,4} and

n(A) = M,(,4,) ̂  2 »,{B.) = £ M(5),
aeS bgS

from which we may conclude that <&(A)=n(A).

The first basic assumption to be made about % is that if r£3D,

a£3Tlr, and .4£5> then Aa*G% and ^4—a*£,5. This leads to our

second theorem.
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Theorem 1.2. 7/t£2D and a£3TCT, then a* is ^f measurable.

Proof. Since g is the covering family for ty, it is sufficient to show

that n(T)=n(Ta*)+iJi(T—a*) for each TEg. Suppose then that

TGS and let a be such a member of 2D that rC<r, each of the sets

(Ta*)„ (T-a*), and T, belong to 311, and n(Ta*)=n,{{Ta*).),

n(T—a*)=ju,((r—a*),) and n(T) = /*,(r,). Then we have

n(T) = M.(r,) = Mr((r«*),) + M,((r - «*),) = M(r«*) + M(r - a*),

which completes the proof.

The next basic assumption to be made about % is that it be intersec-

tive, i.e. if j4Gv5 and BEft, then ABE.%. With this we come to

2. Nilsets and ultimate virtual identity. Somewhat parallel to the

definition of nilsets given in [2 J we define a family of nilsets 91 by

31 =  iiV: JV = U »? where m C X<, A - N G %

and n(A — N) = n(A) whenever A £ %\ ■

Two members A and B of § are called ultimately virtually identi-

cal (u.v.i.) provided for some tE3D, U,<=T'(.4[<)A.B(.-))*G9l. Since 2D is

comprehensive, 2D is a directed set. The term ultimate refers to

ultimate in the sense of the direction on 2D and virtual identity refers

to differences that amount to a nilset.

We now introduce a rather strong but natural assumption con-

cerned with the idea that if two members of g have much in common,

then they are u.v.i. Specifically, our third assumption is that g

satisfies the condition that if A(E$, B(Ei5, and n(AB)>0 then A

and B are u.v.i.

At this point we modify our measure ^ by requiring that members

of 91 have zero measure. We define <j> to be the function on the subsets

of X such that

4(A) = inf *(A - N)

whenever A CZX.

As our fourth and final assumption about our system of measures

we ask that 91 be closed to countable unions. Then <£ turns out to be a

measure which agrees with S^ on % and may be generated by the cov-

ering family gVJ3l and a gauge n' which equals /* on % but is zero on

31. The point to the above modification of SP is to achieve the mea-

surability of the members of %. This brings us to
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Theorem 2.1. If ^4£i$, then A is <f> measurable and <j)(A)='iI?(A)

= lx{A) and if iV£9l, then <f>(N) =0.

Proof. In view of the definitions of 31 and </> and Theorem 1.1

it is evident that <j>(A)=-&(A) =n(A) and that $(N)=0. To see that

A is 4> measurable it is only necessary to check that cj>(T) =<j>{TA)

+<t>(T — A) for each r£gU3l, since gW3l is a covering family for 0.

The above equation is trivially satisfied when r£9l so let us suppose

that T£g. Now if n(AT)>0, let o"i be a member of 3D for which

Ari = Uie„1'(r|i)A^l(.i)*£9l. In view of the properties of % discussed

at the beginning of §1 we can take ar^E:3D large enough that A =ACSX(1

where A„i€z'$rl,% and /3£(Bff2. Now let t be such a member of D that

<ri£r and q-?.C.t, and let B = (AT)*. Then check that A = Br\f\ieT, A\*\

and with the aid of Theorem 1.2 infer that B is M' measurable and

hence also <j> measurable. Let Af = U»ST<(rjijA^4(;))* and note that

t'Gci and hence iV£iVi. In view of this and the fact that <p(Ni) =0,

we conclude that <f>(N) =0 also.

Now, since A =Br\C\ier> A[*\, we have

T- A =T- BKJ  U   (T- Am) C T - B W   U   (T*i) - Aw)
i£r' iGt'

= T-B\J   U   (T{i)- A{i))*CT- B\J   U   (r(,)A^ !0)*
i'Gt' i£t'

from which we infer that  T — A(ZT — B\JN.  Noting further that

ACZB, we conclude

<t>(T) ̂ <t>(TA) + <j>(T - A) ^ 0(r£) +r(r-£U iV)

^ <Kris) + «#»(r - b) + <ka0 = <K^) + o

and

4>(T) = 4>(TA) + *(r - 4).

Now, iifi(AT)=0, then

*(T) ^ 4>(TA) + <t>(T - A) ^ 0 + ^(r - .4) g *(r).

Hence 0(r) =<f>(TA) +cf>(T-A)  whenever  T£g and the proof is

complete.

3. An application to product measures. Suppose that for each

i£/, \,- is an arbitrary (outer) measure on X, and that 3D is the family

of countable subsets of I. Then 3D is clearly comprehensive. Now, for

t£3D, t= \i\, it, • • • , iT, • • ■ }, we can define a regular conditional

measure system vr on X7 by taking j'o = X,1 and vT(x, -)=H+i(') f°r



1968] OBTAINING MEASURES ON UNCOUNTABLE PRODUCT SPACES        1093

each xGIIi-i %if Then, by the construction in [3] we obtain from

this regular conditional measure system a measure nT on XT for which

GO

/*rG8)  =  II K(0r),
r=l

where j3 = HrLi $r and for each r, /3r is a X,r measurable subset of Xir

andTL-iK(fr)<co-
For the system p,, tG2D, it can be shown that we can take

g =  {A: for some r £ 2D, A = aX/3 where a is a jut measurable

set, ^tT(a)<oo, and /3 = H,-eT' & where  for each *£t',

/3» is a X,- measurable subset of Xt and (1) Mr(«) = 0 or

(2) Mr(«)>0 and X<03,-)=1 for each *£t'}

and

91 = <N: N = U m* where X«(w.) = 0 for each i £ A .

It is clear that if AE.%, BE.% and fj.(AB)>0 then for some r£2D,

\i((AB){i)) = 1        for each i £ r'

and consequently A and 23 are u.v.i. Furthermore, ^4J5£g. If

juG45) =0, then for some o-£2D, fx„{(AB),) =0 and again we see that

ABEg. Hence g is intersective. Noting finally that 91 is closed to

countable unions we see that all of our assumptions are met and we

obtain the measure 0onZ with the properties stated in Theorem 2.1.

This measure is essentially the general product measure of [2]. By

breaking the extension into two parts, finite to countable, and count-

able to uncountable, the end result is reached more simply here than

it is in [2].
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