AN EXTENSION THEOREM FOR OBTAINING MEASURES ON UNCOUNTABLE PRODUCT SPACES

E. O. ELLIOTT

Abstract. Several theorems are known for extending consistent families of measures to an inverse limit or product space [1]. In this paper the notion of a consistent family of measures is generalized so that, as with general product measures [2], the spaces are not required to be of unit measure or even σ -finite. The general extension problem may be separated into two parts, from finite to countable product spaces and from countable to uncountable product spaces. The first of these is discussed in [3]. The present paper concentrates on the second. The ultimate virtual identity of sets is defined and used as a key part of the generalization and nilsets similar to those of general product measures [2] are introduced to assure the measurability of the fundamental covering family. To exemplify the extension process, it is applied to product measures to obtain a general product measure. The paper is presented in terms of outer measures and Carathéodory measurability; however, some of the implications in terms of measure algebras should be obvious.

Introduction. An uncountable product space $X = \prod_{i \in I} X_i$ is given with a family $\mathfrak D$ of countable subsets of the index set I. To each such subset $\tau \in \mathfrak D$ there is an associated outer measure μ_{τ} on the countable product space $X^{\tau} = \prod_{i \in \tau} X_i$. How the measures μ_{τ} are obtained is not of interest here, but to keep the complete extension problem in mind we might think that μ_{τ} is obtained as in [3] by extending a regular conditional measure system onto X^{τ} . The problem we are concerned with here is that of stipulating conditions on the system of measures μ_{τ} that allow their extension to an outer measure μ on X having properties reflecting their own.

To proceed with the problem we need to agree on some notation. If $A \subset X$ and σ is any subset of I, let A_{σ} be the projection of A onto the space X^{σ} , and if $a \subset X^{\sigma}$ let a^* be the cylinder in X over a. The symmetric difference between two sets A and B will be denoted by $A \triangle B$, and for $\tau \in \mathfrak{D}$, its complement $I - \tau$ relative to I will be denoted by τ' .

The family $\mathfrak D$ is said to be comprehensive when each countable subset σ of I is contained in some element τ of $\mathfrak D$ (i.e. $\sigma \subset \tau \in \mathfrak D$). In the remainder of the paper we assume that $\mathfrak D$ is comprehensive.

Received by the editors October 14, 1966 and, in revised form, May 5, 1967.

1. The covering family. The existence of the covering family $\mathfrak F$ described below requires that the measures μ_{τ} be rather congenially related. It is in this definition that the notion of a consistent family of measures is being generalized. To give the definition, we must first introduce two families of sets, the first of which is a traditional part of the extension process and the second of which is reminiscent of product measures. For $\tau \in \mathfrak D$ let $\mathfrak M_{\tau} = \{\beta \subset X^{\tau} \colon \beta \text{ is Carath\'eodory measurable with respect to } \mu_{\tau}\}$ and

$$\mathfrak{B}_{\tau} = \left\{ \beta \subset X^{\tau'} \colon \beta = \prod_{i \in \tau'} \beta_i \text{ where } \beta_i \subset X_i \text{ for each } i \in \tau', \text{ and} \right.$$

$$\left. (\alpha \times \beta)_{\sigma} \in \mathfrak{M}_{\sigma} \text{ for each } \alpha \in \mathfrak{M}_{\tau} \text{ and each } \sigma \in \mathfrak{D} \text{ such that } \tau \subset \sigma \right\}.$$

For a covering family \mathfrak{F} we require a family of subsets of X such that for each $A \subset \mathfrak{F}$ there exists $\tau \subset \mathfrak{D}$ with $A = \alpha \times \beta$ for some $\alpha \subset \mathfrak{M}_{\tau}$ and $\beta \subset \mathfrak{G}_{\tau}$, and $\mu_{\sigma}(A_{\sigma}) = \mu_{\tau}(\alpha)$ whenever $\sigma \subset \mathfrak{D}$ and $\tau \subset \sigma$. (Note here, as a consequence of the definition of \mathfrak{G}_{τ} , that also $A_{\sigma} \subset \mathfrak{M}_{\sigma}$.) Further restrictions will subsequently be placed on \mathfrak{F} .

In the above, β is in some sense a set of unit measure relative to α and A is the analogue of a classical cylinder set. On \mathfrak{F} we can now define a function μ by means of $\mu(A) = \mu_{\tau}(\alpha)$ where $A = \alpha \times \beta$, $\alpha \in \mathfrak{M}_{\tau}$, $\beta \in \mathfrak{G}_{\tau}$, $\tau \in \mathfrak{D}$, and $\mu_{\sigma}(A_{\sigma}) = \mu_{\tau}(\alpha)$ whenever $\sigma \in \mathfrak{D}$ and $\tau \subset \sigma$. Using μ as a gauge and \mathfrak{F} as a covering family, we generate an outer measure Ψ on X by taking $\Psi(A)$, $A \subset X$, to be the infimum of numbers of the form $\sum_{B \in \mathfrak{G}} \mu(B)$ where \mathfrak{G} is a countable subfamily of \mathfrak{F} which covers A. We come now to our first

THEOREM 1.1. If $A \subset \mathfrak{F}$ then $\Psi(A) = \mu(A)$.

PROOF. If g is a countable subfamily of \mathfrak{F} such that $A \subset Ug$, then for each $B \in g \cup \{A\}$ let τ_B be such a member of \mathfrak{D} that $\mu(B) = \mu_{\tau_B}(B_{\tau_B})$ and let σ be such a member of \mathfrak{D} that

$$\bigcup_{B\in \mathfrak{G}\cup\{A\}}\tau_B\subset\sigma.$$

Thus $\mu(B) = \mu_{\sigma}(B_{\sigma})$ for each $B \in \mathcal{G} \cup \{A\}$ and

$$\mu(A) = \mu_{\sigma}(A_{\sigma}) \leq \sum_{B \in S} \mu_{\sigma}(B_{\sigma}) = \sum_{B \in S} \mu(B),$$

from which we may conclude that $\Psi(A) = \mu(A)$.

The first basic assumption to be made about \mathfrak{F} is that if $\tau \in \mathfrak{D}$, $\alpha \in \mathfrak{M}_{\tau}$, and $A \in \mathfrak{F}$, then $A\alpha^* \in \mathfrak{F}$ and $A - \alpha^* \in \mathfrak{F}$. This leads to our second theorem.

THEOREM 1.2. If $\tau \in \mathfrak{D}$ and $\alpha \in \mathfrak{M}_{\tau}$, then α^* is Ψ measurable.

PROOF. Since $\mathfrak F$ is the covering family for Ψ , it is sufficient to show that $\mu(T) = \mu(T\alpha^*) + \mu(T-\alpha^*)$ for each $T \in \mathfrak F$. Suppose then that $T \in \mathfrak F$ and let σ be such a member of $\mathfrak D$ that $\tau \subset \sigma$, each of the sets $(T\alpha^*)_{\sigma}$, $(T-\alpha^*)_{\sigma}$ and T_{σ} belong to $\mathfrak M_{\sigma}$ and $\mu(T\alpha^*) = \mu_{\sigma}((T\alpha^*)_{\sigma})$, $\mu(T-\alpha^*) = \mu_{\sigma}((T-\alpha^*)_{\sigma})$ and $\mu(T) = \mu_{\sigma}(T_{\sigma})$. Then we have

$$\mu(T) = \mu_{\sigma}(T_{\sigma}) = \mu_{\sigma}((T\alpha^*)_{\sigma}) + \mu_{\sigma}((T-\alpha^*)_{\sigma}) = \mu(T\alpha^*) + \mu(T-\alpha^*),$$

which completes the proof.

The next basic assumption to be made about \mathfrak{F} is that it be intersective, i.e. if $A \in \mathfrak{F}$ and $B \in \mathfrak{F}$, then $AB \in \mathfrak{F}$. With this we come to

2. Nilsets and ultimate virtual identity. Somewhat parallel to the definition of nilsets given in [2] we define a family of nilsets \mathfrak{A} by

$$\mathfrak{N} = \left\{ N \colon N = \bigcup_{i \in I} n_i^* \text{ where } n_i \subset X_i, A - N \in \mathfrak{F} \right\}$$

and
$$\mu(A - N) = \mu(A)$$
 whenever $A \in \mathfrak{F}$.

Two members A and B of \mathfrak{F} are called ultimately virtually identical (u.v.i.) provided for some $\tau \in \mathfrak{D}$, $\bigcup_{i \in \tau'} (A_{\{i\}} \triangle B_{\{i\}})^* \in \mathfrak{N}$. Since \mathfrak{D} is comprehensive, \mathfrak{D} is a directed set. The term ultimate refers to ultimate in the sense of the direction on \mathfrak{D} and virtual identity refers to differences that amount to a nilset.

We now introduce a rather strong but natural assumption concerned with the idea that if two members of \mathfrak{F} have much in common, then they are u.v.i. Specifically, our third assumption is that \mathfrak{F} satisfies the condition that if $A \in \mathfrak{F}$, $B \in \mathfrak{F}$, and $\mu(AB) > 0$ then A and B are u.v.i.

At this point we modify our measure Ψ by requiring that members of $\mathfrak A$ have zero measure. We define ϕ to be the function on the subsets of X such that

$$\phi(A) = \inf_{N \in \mathfrak{N}} \Psi(A - N)$$

whenever $A \subset X$.

As our fourth and final assumption about our system of measures we ask that $\mathfrak R$ be closed to countable unions. Then ϕ turns out to be a measure which agrees with Ψ on $\mathfrak F$ and may be generated by the covering family $\mathfrak F \cup \mathfrak R$ and a gauge μ' which equals μ on $\mathfrak F$ but is zero on $\mathfrak R$. The point to the above modification of Ψ is to achieve the measurability of the members of $\mathfrak F$. This brings us to

THEOREM 2.1. If $A \in \mathfrak{F}$, then A is ϕ measurable and $\phi(A) = \Psi(A) = \mu(A)$ and if $N \in \mathfrak{N}$, then $\phi(N) = 0$.

PROOF. In view of the definitions of \mathfrak{A} and ϕ and Theorem 1.1 it is evident that $\phi(A) = \Psi(A) = \mu(A)$ and that $\phi(N) = 0$. To see that A is ϕ measurable it is only necessary to check that $\phi(T) = \phi(TA) + \phi(T-A)$ for each $T \in \mathfrak{F} \cup \mathfrak{A}$, since $\mathfrak{F} \cup \mathfrak{A}$ is a covering family for ϕ . The above equation is trivially satisfied when $T \in \mathfrak{A}$ so let us suppose that $T \in \mathfrak{F}$. Now if $\mu(AT) > 0$, let σ_1 be a member of \mathfrak{D} for which $N_1 = \bigcup_{i \in \sigma_1'} (T_{\{i\}} \triangle A_{\{i\}})^* \in \mathfrak{A}$. In view of the properties of \mathfrak{F} discussed at the beginning of §1 we can take $\sigma_2 \in \mathfrak{D}$ large enough that $A = A_{\sigma_2} \times \beta$ where $A_{\sigma_2} \in \mathfrak{M}_{\sigma_2}$ and $\beta \in \mathfrak{G}_{\sigma_2}$. Now let τ be such a member of D that $\sigma_1 \subset \tau$ and $\sigma_2 \subset \tau$, and let $B = (A_\tau)^*$. Then check that $A = B \cap \bigcap_{i \in \tau'} A_{\{i\}}^*$ and with the aid of Theorem 1.2 infer that B is Ψ measurable and hence also ϕ measurable. Let $N = \bigcup_{i \in \tau'} (T_{\{i\}} \triangle A_{\{i\}})^*$ and note that $\tau' \subset \sigma'_1$ and hence $N \subset N_1$. In view of this and the fact that $\phi(N_1) = 0$, we conclude that $\phi(N) = 0$ also.

Now, since $A = B \cap \bigcap_{i \in \tau'} A_{\{i\}}^*$, we have

$$T - A = T - B \cup \bigcup_{i \in \tau'} (T - A_{\{i\}}^*) \subset T - B \cup \bigcup_{i \in \tau'} (T_{\{i\}}^* - A_{\{i\}}^*)$$
$$= T - B \cup \bigcup_{i \in \tau'} (T_{\{i\}} - A_{\{i\}})^* \subset T - B \cup \bigcup_{i \in \tau'} (T_{\{i\}} \triangle A_{\{i\}})^*$$

from which we infer that $T-A \subset T-B \cup N$. Noting further that $A \subset B$, we conclude

$$\phi(T) \le \phi(TA) + \phi(T - A) \le \phi(TB) + \phi(T - B \cup N)$$

$$\le \phi(TB) + \phi(T - B) + \phi(N) = \phi(T) + 0$$

and

$$\phi(T) = \phi(TA) + \phi(T - A).$$

Now, if $\mu(AT) = 0$, then

$$\phi(T) \le \phi(TA) + \phi(T - A) \le 0 + \phi(T - A) \le \phi(T).$$

Hence $\phi(T) = \phi(TA) + \phi(T-A)$ whenever $T \in \mathfrak{F}$ and the proof is complete.

3. An application to product measures. Suppose that for each $i \in I$, λ_i is an arbitrary (outer) measure on X_i and that \mathfrak{D} is the family of countable subsets of I. Then \mathfrak{D} is clearly comprehensive. Now, for $\tau \in \mathfrak{D}$, $\tau = \{i_1, i_2, \dots, i_r, \dots\}$, we can define a regular conditional measure system ν_{τ} on X^{τ} by taking $\nu_0 = \lambda_{i_1}$ and $\nu_{\tau}(x, \cdot) = \lambda_{i_{\tau+1}}(\cdot)$ for

each $x \in \prod_{i=1}^{r} X_{i_i}$. Then, by the construction in [3] we obtain from this regular conditional measure system a measure μ_{τ} on X^{τ} for which

$$\mu_{\tau}(\beta) = \prod_{r=1}^{\infty} \lambda_{i_r}(\beta_r),$$

where $\beta = \prod_{r=1}^{\infty} \beta_r$ and for each r, β_r is a λ_{i_r} measurable subset of X_{i_r} and $\prod_{r=1}^{\infty} \lambda_{i_r}(\beta_r) < \infty$.

For the system μ_{τ} , $\tau \in \mathfrak{D}$, it can be shown that we can take

$$\mathfrak{F} = \left\{ A : \text{for some } \tau \in \mathfrak{D}, A = \alpha \times \beta \text{ where } \alpha \text{ is a } \mu_{\tau} \text{ measurable} \right. \\ \text{set, } \mu_{\tau}(\alpha) < \infty, \text{ and } \beta = \prod_{i \in \tau'} \beta_i \text{ where for each } i \in \tau', \\ \beta_i \text{ is a } \lambda_i \text{ measurable subset of } X_i \text{ and } (1) \ \mu_{\tau}(\alpha) = 0 \text{ or} \\ (2) \ \mu_{\tau}(\alpha) > 0 \text{ and } \lambda_i(\beta_i) = 1 \text{ for each } i \in \tau' \right\}$$

and

$$\mathfrak{N} = \left\{ N \colon N = \bigcup_{i \in I} n_i^* \text{ where } \lambda_i(n_i) = 0 \text{ for each } i \in I \right\}.$$

It is clear that if $A \in \mathcal{F}$, $B \in \mathcal{F}$ and $\mu(AB) > 0$ then for some $\tau \in \mathfrak{D}$,

$$\lambda_i((AB)_{\{i\}}) = 1$$
 for each $i \in \tau'$

and consequently A and B are u.v.i. Furthermore, $AB \in \mathfrak{F}$. If $\mu(AB) = 0$, then for some $\sigma \in \mathfrak{D}$, $\mu_{\sigma}((AB)_{\sigma}) = 0$ and again we see that $AB \in \mathfrak{F}$. Hence \mathfrak{F} is intersective. Noting finally that \mathfrak{N} is closed to countable unions we see that all of our assumptions are met and we obtain the measure ϕ on X with the properties stated in Theorem 2.1. This measure is essentially the general product measure of [2]. By breaking the extension into two parts, finite to countable, and countable to uncountable, the end result is reached more simply here than it is in [2].

REFERENCES

- 1. J. R. Choksi, Inverse limits of measure spaces, Proc. London Math. Soc. (3) 8 (1958), 321-342.
- 2. E. O. Elliott and A. P. Morse, General product measures, Trans. Amer. Math. Soc. (2) 110 (1964), 245-283.
 - 3. E. O. Elliott, Measures on countable product spaces, Pacific J. Math. (to appear).

BELL TELEPHONE LABORATORIES, INC., HOLMDEL, NEW JERSEY