
MODIFICATIONS OF FOURIER TRANSFORMS1

WALTER RUDIN

A classical theorem of Wiener [3, p. 108], [l, p. 118] shows that

the presence or absence of the discrete component of a measure is

accurately and quantitatively reflected in the asymptotic behavior

of its Fourier transform.

On the other hand, it must be obvious to anyone who has worked

in this area that there cannot exist any good general criterion which

would enable us to deduce from the asymptotic behavior of the

Fourier transform of a continuous measure n whether p does or does

not have a singular component. The present note contributes further

evidence in this direction by showing that in many groups (including

the real line and the integers) there are relatively small sets on which

the Fourier transform of any absolutely continuous measure can be

so modified that it becomes the transform of a singular measure.

Let r be the dual of a locally compact abelian group G; Ll(G) and

M(G) denote the spaces of all Haar-integrable functions on G and of

all complex Borel measures on G, respectively, and we identify L1(G)

with the absolutely continuous members of M(G). The Fourier trans-

form of pEM(G) is defined to be

(1) fi(y) =   f (-*, 7)du(x)        (y E T),
J a

where (x, 7) is the value of the character y at the point xEG. If

fEL1(G),f(y) is defined by (1) with/(x)rfx in place of dp(x), where dx
denotes the Haar measure of G. All groups will be written additively.

Notation and terminology are exactly as in [l ].

Theorem. Suppose fi is a subset of V with the following property: to

each compact set KET there corresponds an infinite discrete closed sub-

group A o/T such that

(2) (K-K)f\A={0}

and such that K+XE^/or every XEA, except/or X = 0.
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77ze»7, there corresponds to every fELx(G) a uEMiG), singular with

respect to the Haar measure of G, such that

(3) fi(y) = }(y)       for all y outside fi.

Before we prove the Theorem we give some examples of situations

in which it can be applied.

Example 1. G = T=R1, the real line. Letpi<pi<p3< ■ ■ ■ be posi-

tive integers, let fis be the union of the intervals [nps — s, nps+s], for

n=+l, +2, ±3, ■ ■ • (note that n = 0 is omitted!) and put fi

= fiiWfiiUfisU • ■ • . If K is compact, then KE[ — s, s] tor some s,

and we can take the infinite cyclic group generated by p, as our A.

If e>0 we can choose {ps} so that ^Z2s/ps<e. Then fi will be

small in the sense that

(4) w(fin [~t,t]) < 2/e

for every positive number t. Here m denotes Lebesgue measure, of

course; (4) implies that the upper density of fi is at most e.

The same construction can of course be carried out if T=Z, the

additive group of the integers.

Example 2. G = r = i?2, the plane. Define

(5) fi= {is,t): \s\   > 10, |(|   < log log |*| }.

Given a compact KER2 let A be the group generated by (sk, 0)

where Sk is suitably large. This fi has density 0, in an obvious sense.

Example 3. G= TN, the Af-dimensional torus, T = ZN, the additive

group of all A^-tuples (wi, • • • , «jv) with ntEZ. Let P he the set of all

yEZN for which all «< are nonnegative (P is the positive quadrant,

octant, etc., in ZN), let — P be the set of all y such that —yEP, and

put fi = PW(-P). The density of fi is 21~N.

If K is compact in ZN then K is finite, and A can be taken to be the

cyclic group generated by a suitable multiple of (1, 1, • • • , 1).

A case of this example occurred in [2]. Our theorem has relevance

to the theory of several complex variables for the following reason:

TN can be embedded in CN, the space of N complex variables, so as

to be the distinguished boundary of the unit polydisc UN. If the given

function / on TN is real, u can also be taken real (as the proof will

show), and since p.=f except on fi, the Poisson integral of /—dp. will

define a function u in UN which is the real part of a holomorphic

function and whose radial limits are equal to / a.e. on TN, since u is

singular. (See [3, Chapter 17] for Poisson integrals in several vari-

ables.)
Example 4. Let G he the infinite-dimensional torus T" whose dual

Zm consists of all integer sequences {ni,ni,n3, ■ ■ ■ } with only finitely
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many ra, different from 0. As in Example 3, let 12 consist of all yEZ°°

which have all ra.^0, plus those which have all ra,s=0.

If K is compact in Z°° then K is finite, and there is an integer r such

that every yEK has rat = 0 if i>r and has | »,-| <r if l^i^r. Choose

7k£Z°° so that «i= ■ • ■ —nr = 2r, ra, = 0 for i>r, and associate the

group A generated by 7k to K.

We now turn to the proof of the theorem.

Lemma 1. If fELr(G) and J has compact support then there exists

gEL1(G) and uECc(G) such that

(6) / = / * g * u.

Here CC(G) is the space of all continuous functions on G, with

compact support, and * denotes convolution.

Proof. Let K be the support of/. By taking the support of u in a

small enough neighborhood of 0 we can find uECc(G) such that

| u(y) | ^ 1 for all 7 GAT. There exists vEL'(G) such that v(y) = 1 on AT

and v(y) =0 wherever | u(y)\ i£§ [l, Theorem 2.6.1]. It follows that

there is a continuous function <p on T such that <bu = v and such that

4>(y) =0 wherever v(y)=Q.

Suppose 7o£r is such that <p does not vanish identically in any

neighborhood of y0. Then m(70)^0. Put c = u(y0). By [l, Theorem

2.6.5] there exists hEL1 (G) with ||fc||i<|c|, such that u(y)+h(y) =c

in a neighborhood U of 70. The series

(7) v ■ £ c-n-xh
71=0

converges in the norm of A (r) (the space of all Fourier transforms of

members of L1(G)), so its sum is w for some wEL1(G), and one com-

putes easily that $(7) — <j>(y) in U.

So <j> belongs to A (T) locally, and it follows from [l, Theorem 6.2.6]
that <p — g for some gEL1(G).

Since ^(-y) = 1 on K, we have f=fv=Jgu, and this is equivalent to

(6).

Lemma 2. Suppose f'EL1(G), / has compact support K, and A is an

infinite discrete closed subgroup of T such that (2) holds. Then there exists

pEM(G), singular with respect to the Haar measure of G, such that

(i)  u(y)=?(y)foryEK,
(ii) the support of p. is K + A,

m Ml*
Here \\p\ denotes the total variation of p.
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Proof. Let 77 be the annihilator of A [l, p. 35], i.e., 77 is the set of

all xEG at which (x, X) = 1 for every X£A. Clearly 77 is a closed sub-

group of G, and since A is discrete, the quotient group G/H is com-

pact. Let dx, ds, d£ denote the Haar measures of G, 77, C/77. We

normalize d£ so that its total mass is 1 (since G/H is compact) and we

can then adjust ds so that the formula

(8) I   4>ix)dx =   J      di. I   d>ix + s)ds
J G •* GIH       J H

holds for every <pECc(G) [l, p. 54]. Here and later £ = {(x) is the coset

of H which contains x.

Since / has compact support, the inversion theorem shows that /

coincides almost everywhere with a continuous function. So we may

assume that/ is continuous, and we define

(9) 0iQ =   f  \fix + s)\ds       (*G G/H).
J H

It follows from (8) that /3(£) < oo for almost all £, but Lemma 1 implies

that (3 is actually a continuous function: Lemma 1 gives

|/(«' + *)-/(«"+*) |   =   f   \if*g)ix)\
J G

■ | uix' + s — x) — uix" + s — x) I dx

and since uECc(G) there corresponds to each «>0 a neighborhood V

of 0 in G such that x' —x"EV implies

(10) f   | fix' + s)- fix" + s) | ds < e.
J H

The continuity of /8 now follows from (10).

Now fix £oEG/H so that /3(£0) ̂ /3© for all £EG/H, fix x0G?o, and

define tEM(G) by

(11) dr = fix0 + s)ds.

Then r is concentrated on 77,

(12) imi =m= f 0tt)# = IMIi
J G/H

and, for any 7GT,
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Ky) =  I  (—*i 7)/(*o + s)ds
J H

(13)

= (%o, y) j   (-xo —s, y)/(x0 + s)ds = (x0, y)Fy(%0)

where

(14) Fy(Q =   f (-x -s, y)/(x + s)ds       ({ G G/H).

If we multiply/ by a character, the analogue of (10) still holds, and

we see that each F7 is a continuous function on G/H.

We wish to determine F7 by computing its Fourier coefficients.

The characters of G/H are the members of A, but each XGA is also a

character of G which is constant on the cosets of H. Hence we can

identify (x, X) and (£, X). With this in mind we obtain

Fy(\)=   f     (-l,\)Fy(Qdl
,... J am
(15)

=   f     di f (-x-s,y + X)/(x + s)ds=f(y + X)
J a ih    J h

for any 7Gr, XGA.
If 7 is not in K+A, (15) shows that F7(X) =0 for every XGA; hence

F7(£)=0 for all £, and (13) gives r(y) =0. So the support of f is in

K+A.
If yEK, (2) implies that y +XE K if and only if X = 0, so (15) shows

that F7(X) =0 if X^0 and that F7(0) =}(y). Hence F7(£) =f(y) for all

f, and (13) gives

(16) f(7) = (x0) 7)/(7)        (yEK).

Since r is concentrated on H, r(7+X) =7(7) for all XGA; hence the

support of f is exactly K+A.

Next we claim that t is singular. To prove this it is enough to show

that every compact set EEH has Haar measure 0 in G. If h is the

characteristic function of E, then h(X)=m(E) for every XGA, and

since A lies in no compact subset of T, the fact that k vanishes at

infinity implies m(E) =0.

Finally, define pEM(G) by: fi(y) = ( —x0, 7)^(7) for all 7Gr. This
clearly satisfies all requirements.
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Proof of the Theorem. The functions whose Fourier transforms

have compact support are dense in LxiG). So iff EL1 iG) we can repre-

sent/ in the form/= /.U where each Ji has compact support TC.Cr

and where X) ||/<||i < °° • Apply Lemma 2 to each/,-, obtaining singular

measures pn such that fiiiy) =fiiy) outside fi (by (i) and (ii) of Lemma

2) and such that ||ju,-|| ̂ ||/<||i. The series 1Z Mf then converges in the

total variation norm to a measure p which is therefore also singular,

and if y is not in fi we have

(17) Ky) = X My) = zZUy) = Ky)-

Added in proof. Further results along these lines have appeared in

Bull. Amer. Math. Soc. 74 (1968), 526-528.
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