A NOTE ON CONNECTEDNESS IM KLEINEN

H. S. DAVIS1

1. Introduction. In this paper S denotes a compact Hausdorff continuum. If $A \subset S$, T(A) denotes the complement of the set of those points p of S for which there exists a subcontinuum W of S such that $y \in Int(W)$ and $W \cap A = \emptyset$. Equivalently $p \in T(A)$ iff every subcontinuum that has p as an interior point intersects A nonvoidly. Basic properties of the set function T are to be found in [1].

The concepts of "locally connected" and "connected im kleinen" are taken as known. It is noted that S is connected im kleinen at a point p of S iff for every open set U that contains p, $p \notin T(Fr(U))$ or, equivalently, for every closed $A \subset S$, $p \in A$ iff $p \in T(A)$. S is said to be semilocally connected [4] at a point p of S provided that for every open set U that contains p, there exists an open set V that contains p such that $V \subset U$ and S - V has a finite number of components. S is semilocally connected at a point p of S iff T(p) = p [3].

2. Decomposability and connectedness im kleinen. Let A and B be subsets of S, S is decomposable about A and B iff there exists subcontinua M and N of S such that $A \subset M - N$, $B \subset N - M$ and $S = M \cup N$.

THEOREM 1. Let A and B be subsets of S. If S is decomposable about A and B then $A \cap T(B) = \emptyset = B \cap T(A)$.

Proof. This follows easily from the definitions.

THEOREM 2. Let A and B be subcontinua of S. If $A \cap T(B) = \emptyset$ = $B \cap T(A)$ then S is decomposable about A and B.

PROOF. Since $A \cap T(B) = \emptyset = B \cap T(A)$ and A and B are compact continua, there exist continua W_A and W_B such that $A \subset \operatorname{Int}(W_A)$, $B \subset \operatorname{Int}(W_B)$, $W_A \cap B = \emptyset$ and $W_B \cap A = \emptyset$. Let $V_A = \operatorname{Int}(W_A) - W_B$ and $V_B = \operatorname{Int}(W_B) - W_A$. Let K_A be the component of $S - V_B$ that contains W_A and let K_B be the component of $S - V_A$ that contains W_B . Suppose that $S \neq K_A \cup K_B$. Then let $L = S - (K_A \cup K_B)$ and note $L \neq \emptyset$. Since $K_B \cup \overline{L} \subset S - V_A$ and K_B is a proper subset of $K_B \cup \overline{L}$, $K_B \cup \overline{L}$ is the union of two disjoint closed nonvoid sets P_A and P_B

Received by the editors August 31, 1966.

¹ The author was supported in part by the National Science Foundation, Grant NSF-GP7126 during preparation of this paper.

and K_B may be assumed to lie in P_B . Then $P_A \cup K_A$ is the union of two disjoint closed nonvoid sets Q_A and Q. K_A may be assumed to lie in Q_A . Thus $S = Q \cup (P_B \cup Q_A)$ which is a separation of S since $Q \subset P_A$.

Theorems 1 and 2 are generalizations of Theorems 5 and 6 of [2]. The proof of Theorem 2 is similar to the proof of Jones's Theorem 6.

THEOREM 3. Let $A \subset S$ and a and b be points of S. If T(A) = A and a and b lie in the same component K of S - A then there exists a continuum W such that $\{a\} \cup \{b\} \subset W \subset S - A$.

PROOF. For each point $x \in K$ there exists a continuum W_x such that $x \in \operatorname{Int}(W_x)$ and $W_x \subset K$. Since $\{\operatorname{Int}(W_x) : x \in K\}$ covers K there exists a finite chain, $\operatorname{Int}(W_1)$, $\operatorname{Int}(W_1)$, \cdots , $\operatorname{Int}(W_m)$ such that $a \in \operatorname{Int}(W_1)$, $b \in \operatorname{Int}(W_m)$ and $\operatorname{Int}(W_j) \cap \operatorname{Int}(W_{j+1}) \neq \emptyset$ for $j = 1, \cdots, m-1$. Let $W = W_1 \cup W_2 \cup \cdots \cup W_m$. Thus W is the desired continuum.

Theorem 3 is a generalization of Theorem 6.2 of [4].

THEOREM 4. Let p be a point of S. If T(p) = p and if, for every subcontinuum W of S that does not contain p, $p \in T(W)$ then S is connected im kleinen at p.

PROOF. Let U be an open set containing p. Since T(p) = p, S is semilocally connected at p and therefore there exists an open set $V \subset U$ containing p such that $S - V = W_1 \cup \cdots \cup W_m$ where each W_i is a subcontinuum of S. Let K be a component of S - p that contains at least one of the W_i 's. It follows from the compactness of the W_i 's and Theorem 3 that there exists a continuum $W \subset K$ such that $(S - V) \cap K \subset W$. Since $p \notin T(W)$ there exists a continuum M such that $p \notin Int(M)$ and $M \cap W = \emptyset$. Hence $(M \cap K) \cup \{p\} = M \cap \overline{K}$ is a continuum lying in $V \cap \overline{K}$ containing p in its interior relative to \overline{K} . Since there are only a finite number of components of S - p which contain at least one of the W_i 's the closure H of their union is connected im kleinen at p. Furthermore $(S - H) \cup \{p\} = N$ is a continuum lying in V. If L denotes the component of $V \cap H$ which contains p then $N \cup L$ is the component of V containing p and $p \in Int(L)$. Thus S is connected im kleinen at p.

The above proof is patterned after Jones' proof of Theorem 8 of [2].²

² The author wishes to thank the referee for directing his attention to the quoted paper by Jones.

COROLLARY 4.1. Let p be a point of S. If, for every subcontinuum W that does not contain p, S is decomposable about p and W then S is connected im kleinen at p.

COROLLARY 4.2. Let p be a point of S. If S is not connected im kleinen at p but is semilocally connected at p then there exists a subcontinuum W of S such that $p \in T(W) - W$.

COROLLARY 4.3. Let S be semilocally connected at p. S is connected im kleinen at p iff for all subcontinua W of S, $p \in W$ iff $p \in T(W)$.

COROLLARY 4.4. S is locally connected iff for every subcontinuum W of S, T(W) = W.

EXAMPLE 1. The hypothesis in Theorem 4 that T(p) = p is necessary. There exists a subcontinuum S of the plane and a point $p \in S$ such that for no subcontinua W of S is it true that $p \in T(W) - W$ and yet S is not connected im kleinen at p.

Construct S as follows:

Let p = (0, 0), a = (1, 0), b(-1, 0), $a_m = (1, 1/m)$, $b_m = (-1, 1/m)$, $c_m = (1, -1/m)$ and $d_m = (-1, -1/m)$. Let

$$K_m = \left\{ (x, y) \mid (x - 1)^2 + y^2 = \left(\frac{1}{m}\right)^2, \ x \ge 1 \right\}$$

and

$$L_m = \left\{ (x, y) \mid (x+1)^2 + y^2 = \left(\frac{1}{m}\right)^2, \ x \leq -1 \right\}.$$

If h and k are points of the plane then denote by [hk] the closed line segment from h to k. Let

$$S = [ab] \cup \left(\bigcup_{m=1}^{\infty} (K_m \cup L_m \cup [pa_m] \cup [pb_m] \cup [c_m d_m])\right).$$

THEOREM 5. Let p be a point of S. If there exists a collection $\{W_{\alpha}\}$ of subcontinua of S such that $\{W_{\alpha}\}$ is simply ordered by inclusion, $S-p=\bigcup\{W_{\alpha}\}=\bigcup\{\operatorname{Int}(W_{\alpha})\}$ and for each α , $p\notin T(W_{\alpha})$ then S is connected in kleinen at p.

PROOF. It is immediate that T(p) = p. Let W be a subcontinuum of S that does not contain p. Since W is compact and $\{Int(W_{\alpha})\}$ is simply ordered by inclusion, there is a continuum $W_{\beta} \in \{W_{\alpha}\}$ such that $W \subset Int(W_{\beta})$. Since $p \in T(W_{\beta})$, $p \in T(W)$. Thus, by Theorem 4, S is connected im kleinen at p.

3. T-addition continua. S is weakly irreducible iff the number of components of the complement of any finite collection of subcontinua is finite. S is T-symmetric iff for any two closed subsets A and B of S, $T(A) \cap B = \emptyset$ iff $A \cap T(B) = \emptyset$. S is T-additive iff for any collection of closed subsets $\{A_{\alpha}\}$ of S whose union is closed, $T(\bigcup\{A_{\alpha}\}) = \bigcup\{T(A_{\alpha})\}$.

THEOREM 6. If S is weakly irreducible then S is T-symmetric.

PROOF. Let A and B be closed subsets of S and suppose $A \cap T(B) = \emptyset$. Since A is compact and does not intersect T(B), there is a finite collection $\{W_i\}$ of disjoint subcontinua of S whose interiors cover A, and whose union does not intersect B. Let $p \in B$ and let K be the component of $S - \bigcup \{W_i\}$ that contains p. Since S is weakly irreducible K is open and since $A \subset \{\operatorname{Int}(W_i)\}$, $\overline{K} \cap A = \emptyset$. Hence $p \notin T(A)$ and $B \cap T(A) = \emptyset$. By symmetric argument, if $B \cap T(A) = \emptyset$ then $A \cap T(B) = \emptyset$ and thus S is T-symmetric.

THEOREM 7. If S is T-symmetric then S is T-additive.

PROOF. Let $\{A_{\alpha}\}$ be a collection of closed subsets of S whose union is closed. Since always $T(\bigcup\{A_{\alpha}\}) \supset \bigcup\{T(A_{\alpha})\}$, it need only be shown that $T(\bigcup\{A_{\alpha}\}) \subset \bigcup\{T(A_{\alpha})\}$. Let $p \in T(\bigcup\{A_{\alpha}\})$. Since S is T-symmetric $T(p) \cap \bigcup\{A_{\alpha}\} = \emptyset$; hence there exists β such that $T(p) \cap A_{\beta} \neq \emptyset$. But then $p \in T(A_{\beta})$; hence $p \in \bigcup\{T(A_{\alpha})\}$ and thus S is T-additive.

THEOREM 8. If, for any finite collection $\{W_i\}$ of subcontinua of S and for any point p such that $p \in \bigcap \{Int(W_i)\}$, there exists a continuum W such that $p \in Int(W)$ and $W \subset \bigcap \{W_i\}$ then S is T-additive.

PROOF. Let $\{A_{\alpha}\}$ be a collection of closed subsets of S such that $\cup \{A_{\alpha}\} = \mathrm{Cl}(\cup \{A_{\alpha}\})$. Clearly $T(\cup \{A_{\alpha}\}) \supset \cup \{T(A_{\alpha})\}$. Suppose $p \in T(\cup \{A_{\alpha}\}) - \cup \{T(A_{\alpha})\}$. Then, for each α , there exists a subcontinuum W_{α} of S such that $p \in \mathrm{Int}(W_{\alpha})$ and $W_{\alpha} \cap A_{\alpha} = \emptyset$. $\{S - W_{\alpha}\}$ covers $\cup \{A_{\alpha}\}$ which is closed and there forecompact. Let $\{S - W_{i}\}$ be a finite subcover of $\cup \{A_{\alpha}\}$. But then $p \in \cap \{\mathrm{Int}(W_{i})\}$. By hypothesis, there exists a subcontinuum W of S such that $p \in \mathrm{Int}(W)$ and $W \subset \cap \{W_{i}\}$. Hence $p \in T(\cup \{A_{\alpha}\})$ contradicting the supposition. Thus $T(\cup \{A_{\alpha}\}) = \cup \{T(A_{\alpha})\}$.

COROLLARY 8.1. Let S be compact. If S is hereditarily unicoherent then S is T-additive.

THEOREM 9. Let S be T-additive and $p \in S$. If S is not connected

im kleinen at p then there exists a subcontinuum W of S such that $p \in T(W) - W$.

PROOF. Since S is not connected im kleinen at p, there exists an open set Q containing p such that $p \in T(Fr(Q))$. Let $\{W_{\alpha}\}$ be the components of Fr(Q) then $Fr(Q) = \bigcup \{W_{\alpha}\} = \text{Cl}(\bigcup \{W_{\alpha}\})$ and the W_{α} 's are closed. Thus $p \in \bigcup T(W_{\alpha})$; so there exists $W \in \{W_{\alpha}\}$ such that $p \in T(W)$.

COROLLARY 9.1. Let S be T-additive and $p \in S$. S is connected im kleinen at p iff, for all subcontinua W of $S p \in W$ iff $p \in T(W)$.

BIBLIOGRAPHY

- 1. H. S. Davis, D. P. Stadtlander and P. M. Swingle, *Properties of the set functions* T^m , Portugal. Math. 21 (1962), 113-133.
- 2. F. B. Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math. 63 (1941), 545-553.
- 3. —, Concerning nonaposyndetic continua, Amer. J. Math. 70 (1948), 403-413.
 - 4. G. T. Whyburn, Semilocally connected sets, Amer. J. Math. 61 (1939), 733-749

MICHIGAN STATE UNIVERSITY