J-NOETHERIAN INTEGRAL DOMAINS WITH 1 IN THE STABLE RANGE

WILLIAM J. HEINZER

Let R be a commutative ring with identity. In [1, p. 29], Bass has shown that if the maximal spectrum of R is noetherian of combinatorial dimension d and if R' is a finite R-algebra, then d+1 defines a stable range for GL(R'). Estes and Ohm in [2] have considered some topics related to Bass's theorem mainly for the case when R' = R. In particular, they prove, for any integer $n \ge 0$, the existence of an integral domain D such that the maximal spectrum of D has dimension n and n is in the stable range of n. They raise the question of whether there exists a domain n with these properties for which the maximal spectrum of n is noetherian. Our purpose is to give an affirmative answer to this question.

If A is an ideal of R then we let J(A) denote the intersection of the collection of maximal ideals of R containing A and $J = \{ \text{ideals } A \text{ of } R \mid J(A) = A \}$. We say that R is J-noetherian if the ideals of J satisfy the ascending chain condition. This is equivalent to the statement that the maximal spectrum of R is noetherian. The dimension of the maximal spectrum of R is n provided there is a chain $P_0 < P_1 < \cdots < P_n$ of prime ideals of R which are in the set J but no chain of longer length. In this case, we say that R has J-dimension n. A positive integer t is said to be in the stable range of R if for $s \ge t$ whenever $a_1, a_2, \cdots, a_{s+1}$ are elements of R such that $(a_1, a_2, \cdots, a_{s+1}) = R$, then there exist $b_1, \cdots, b_s \in R$ such that $(a_1, a_2, \cdots, a_{s+1}) = (a_1 + b_1 a_{s+1}, \cdots, a_s + b_s a_{s+1})$. We can now state our result as follows.

THEOREM. For each positive integer n there is a J-noetherian domain D which has 1 in the stable range and has J-dimension n.

Our examples are obtained by using an existence theorem due to Jaffard [3, p. 78]. Jaffard has shown that if G is a lattice-ordered abelian group then there is an integral domain D which has G as its group of divisibility. His construction is carried out by using the group ring B(G) of G with respect to an arbitrary field F. The elements of B(G) may be regarded as formal sums $\sum_{i=1}^{n} a_i X^{Gi}$ where $a_i \in F$ and $g_i \in G$. We wish now to observe that Jaffard's construction

gives, in fact, a Bezout¹ domain D which has 1 in the stable range.² The domain D is obtained by defining a map ϕ from $B(G)^*$, the nonzero elements of the domain B(G), into G. We can write an element of $B(G)^*$ uniquely in the form $\sum_{i=1}^n a_i X^{g_i}$ where the g_i are distinct elements of G and the a_i are nonzero elements of the field F. Then $\phi(\sum_{i=1}^n a_i X^{g_i}) = \inf\{g_i\}$. We extend ϕ to E^* , the nonzero elements of the quotient field of B(G), by defining $\phi(p/q) = \phi(p) - \phi(q)$ for p, $q \in B(G)^*$. If $D^* = \{ y \in E^* | \phi(y) \ge 0 \}$ then $D = D^* \cup \{ 0 \}$. To show that 1 is in the stable range of D and that D is Bezout we show that for $p, q \in E^*$ there is an element r of D such that pD + qD = (p + rq)D. Since $\phi(p) = \phi(X^{\phi(p)})$ we have $p = X^{\phi(p)}u_1$ where u_1 is a unit of D. Similarly $q = X^{\phi(q)}u_2$ where u_2 is a unit of D. If $\phi(p) \leq \phi(q)$, then we choose r = 0. Since $\phi(q/p) = \phi(q) - \phi(p) \ge 0$ we have $q \in pD$ and hence pD+qD=pD. If $\phi(p) \leq \phi(q)$ then we set $r=u_1/u_2$. Since u_1 and u_2 are units of D, $\phi(r) = \phi(u_1) - \phi(u_2) = 0$ and $r \in D$. We have p + rq $=u_1X^{\phi(p)}+u_1X^{\phi(q)}=u_1(X^{\phi(p)}+X^{\phi(q)})$. And because $\phi(p)\neq\phi(q)$ we have $\phi(p+rq) = \phi(u_1) + \phi(X^{\phi(p)} + X^{\phi(q)}) = 0 + \inf\{\phi(p), \phi(q)\}$. Hence $\phi(p/(p+rq))$ and $\phi(q/(p+rq))$ are positive and pD+qD=(p+rq)D. It follows that D is a Bezout domain. Moreover, if $(a_1, a_2, \dots, a_{s+1}) = D$, then there exist elements b_i of D such that $(a_i, a_{s+1}) = (a_i + b_i a_{s+1})$ for $i = 1, \dots, s$. Hence $(a_1, \dots, a_{s+1}) = (a_1 + b_1 a_{s+1}, \dots, a_s + b_s a_{s+1})$ and 1 is in the stable range of D.

Let G^+ denote the set of positive elements of G. By an ideal of G we will mean a nonempty subset I of G^+ with the following properties: (1) $0 \notin I$, (2) if $a \in I$ and b > a, then $b \in I$, (3) if a, $b \in I$ then $\inf\{a, b\} \in I$. If, in addition, the complement of I in G^+ is closed under addition then we say that I is a prime ideal. With each ideal I of G we associate the subset $\phi^{-1}(I) \cup \{0\}$ of D. It is straightforward to check that this gives a one-to-one inclusion preserving correspondence between the ideals of G and the proper integral ideals of the Bezout domain D. Moreover, I is a prime ideal of G if and only if $\phi^{-1}(I) \cup \{0\}$ is a prime ideal of D.

We proceed to construct a lattice-ordered abelian group G which has the following properties:

- 1. There is a chain $I_0 < I_1 < \cdots < I_n$ of prime ideals of G but no chain of longer length.
 - 2. Every prime ideal of G is an intersection of maximal ideals.
- 3. For each ideal I of G there are only finitely many prime ideals of G which are minimal with respect to the property of containing I.

It follows from our previous observations that a domain D con-

 $^{^{1}}$ We say that D is a *Bezout domain* if every finitely generated ideal of D is principal.

² For the proof of this fact and for several other helpful suggestions concerning this paper, I wish to thank Jack Ohm.

structed by means of Jaffard's theorem which has G as its group of divisibility will have Krull dimension n+1, each proper prime ideal of D will be an intersection of maximal ideals, and each ideal of D will have only finitely many minimal prime divisors. Since D is finite dimensional this last property implies that D is J-noetherian [2]. Moreover, D will have J-dimension either n or n+1. If G has infinitely many minimal primes then (0) is an intersection of maximal ideals of D and $\dim_J D = n+1$; otherwise $\dim_J D = n$.

We will say that a group G which satisfies property 1 above has dimension n.

Our construction of a group G which has properties 1, 2, and 3 is based on the following two lemmas.

LEMMA 1. Let $\{H_{\alpha}\}$ be a family of lattice-ordered abelian groups and let H be the weak direct sum of the H_{α} 's, where H is ordered by defining $\{a_{\alpha}\} \geq \{b_{\alpha}\}$ if and only if $a_{\alpha} \geq b_{\alpha}$ for each α . Let $p_{\alpha} : H \rightarrow H_{\alpha}$ be the canonical projection homomorphism. Then each prime ideal Q of H is of the form $p_{\alpha}^{-1}(Q_{\alpha}) \cap H^+$ where Q_{α} is a prime ideal of some H_{α} and H^+ is the set of positive elements of H.

Using properties of the weak direct sum and the definition of a prime ideal in H the proof of Lemma 1 is straightforward and will be omitted.

It follows from Lemma 1 and the fact that elements in the weak direct sum have only finitely many nonzero coordinates that if $\{H_{\alpha}\}$ is a collection of lattice-ordered abelian groups such that each H_{α} satisfies properties 1, 2 and 3 above, then $H = \sum_{\alpha} H_{\alpha}$ also satisfies these properties. Moreover, if there are infinitely many α then H has infinitely many minimal primes.

LEMMA 2. Suppose that H is a lattice-ordered abelian group which satisfies properties 1, 2, and 3 stated above. Assume in addition that H has infinitely many minimal primes. Let T be a totally ordered archimedean group and let $K = T \oplus H$ where we order K by defining $(a, h) \ge (a', h')$ if and only if a > a' or a = a' and $h \ge h'$. Then K is a lattice-ordered abelian group having dimension n+1 and K satisfies properties 2 and 3 stated above.

PROOF. We note first that $Q = \{(a, h) \in K | a > 0\}$ is the unique minimal prime ideal of K and that every ideal of K compares with Q. It is clear that Q is a prime ideal; and that Q is minimal follows from the fact that if a, $a' \in T$ with a > 0, then for some positive integer n, na > a'. If $(a, h) \in K^+ - Q$ then a = 0 so (a, h) < q for any $q \in Q$. Hence any ideal containing (a, h) contains Q, and it follows that every ideal of K compares with Q.

If I is an ideal of K which properly contains Q then let $I_H = \{h \in H | (0, h) \in I\}$. I_H is an ideal of H and I is a prime ideal of K if and only if I_H is a prime ideal of H. The mapping which associates I with I_H is a one-to-one inclusion preserving correspondence between the ideals of K which properly contain Q and the ideals of H. Since I is prime if and only if I_H is prime, we conclude that each nonminimal prime of K is an intersection of maximal ideals and that the ideals of K satisfy property 3. Finally, the fact that H has infinitely many minimal primes implies that Q is the intersection of the primes of K which properly contain Q. Hence K also satisfies property 2. This completes the proof of Lemma 2.

By starting with a totally ordered archimedean group and applying Lemmas 1 and 2 we can now obtain for any positive integer n a lattice-ordered abelian group G_n which satisfies properties 1, 2 and 3 and has a unique minimal prime. The domain D_n constructed by means of Jaffard's theorem which has G_n for its group of divisibility is J-noetherian, has 1 in the stable range, and has J-dimension n. Moreover, the fact that D_n is a Bezout domain and hence is Prüfer implies that D_n has the same prime ideal structure as any Kronecker function ring D_n^* of D_n [4]. In fact each ideal of D_n^* is the extension of an ideal of D_n and each ideal of D_n is the contraction of its extension. It follows that D_n^* is also J-noetherian and has J-dimension n. This gives an affirmative answer to the question raised in [2] concerning the existence of J-noetherian Kronecker function rings of arbitrary J-dimension.

REFERENCES

- 1. H. Bass, K-theory and stable algebra, Inst. Hautes Etudes Sci. Publ. Math. No. 22 (1964), 5-60.
- 2. D. Estes and J. Ohm, Stable range in commutative rings, J. Algebra 7 (1967), 343-362
 - 3. P. Jaffard, Les systèmes d'idéaux, Dunod, Paris, 1960.
- 4. W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche. I, Math Z. 41 (1936), 544-577.

LOUISIANA STATE UNIVERSITY