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Let R be a commutative ring with identity. In [l, p. 29], Bass has

shown that if the maximal spectrum of R is noetherian of combi-

natorial dimension d and if R' is a finite P-algebra, then d + 1 defines

a stable range for GL(P'). Estes and Ohm in [2] have considered

some topics related to Bass's theorem mainly for the case when

R' =P. In particular, they prove, for any integer n^O, the existence

of an integral domain D such that the maximal spectrum of D has

dimension n and 1 is in the stable range of D. They raise the question

of whether there exists a domain D with these properties for which the

maximal spectrum of D is noetherian. Our purpose is to give an

affirmative answer to this question.

If A is an ideal of P then we let JiA) denote the intersection of the

collection of maximal ideals of R containing A and /= {ideals A of

R I JiA) =A}. We say that R is /-noetherian if the ideals of / satisfy

the ascending chain condition. This is equivalent to the statement

that the maximal spectrum of R is noetherian. The dimension of the

maximal spectrum of R is n provided there is a chain P0<Pi

< • • ■ <P„ of prime ideals of R which are in the set J but no chain of

longer length. In this case, we say that R has /-dimension n. A posi-

tive integer / is said to be in the stable range of R if for s = t whenever

ai, a2, ■ ■ ■ , as+1 are elements of R such that (ai, a2, ■ ■ ■ , a,+/) =R,

then there exist b\, • • • , b.ER such that (ai, a2, ■ ■ • , a„+i)

= idi+bia,+i, • ■ ■ , a3+bsaa+i). We can now state our result as

follows.

Theorem. For each positive integer n there is a J-noetherian domain

D which has 1 in the stable range and has J-dimension n.

Our examples are obtained by using an existence theorem due to

Jaffard [3, p. 78]. Jaffard has shown that if G is a lattice-ordered

abelian group then there is an integral domain D which has G as its

group of divisibility. His construction is carried out by using the

group ring 73(G) of G with respect to an arbitrary field P The ele-

ments of P(G) may be regarded as formal sums XX1 aiX" where

o.GP and giEG. We wish now to observe that Jaffard's construction
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gives, in fact, a Bezout1 domain D which has 1 in the stable range.2

The domain D is obtained by defining a map c/> from B(G)*, the non-

zero elements of the domain B(G), into G. We can write an element

of B(G)* uniquely in the form X^"=i &X9i where the gi are distinct

elements of G and the ai are nonzero elements of the field P. Then

<p( S"=i aX") =inf {gi}. We extend <p to E*, the nonzero elements of

the quotient field of B(G), by defining <p(p/q) =<p(p) —<p(q) for p,

qEB(G)*. If D*={yEE*\<p(y)^0} then D = D*\j{o}. To show
that 1 is in the stable range of D and that D is Bezout we show that

for p, qEE* there is an element r of D such that pD+qD = (p+rq)D.

Since <p(p) =</>(A*(p)) we have p = X*(p)tti where Mi is a unit of r>.

Similarly g = A*(«)w2 where w2 is a unit of Pa If <p(p)^<p(q), then we

choose r = 0. Since <p(q/p) =<p(q)—cj>(p) ^0 we have qEpD and hence

pD+qD = pD. If <p(p)%.<p(q) then we set r=ux/u2. Since Mi and w2

are units of L>, </>(r) =c^(mi) — ̂ >(w2) =0 and r£L>. We have £+rg

= MlX*w+MlA*<")=Mi(A*w+A*('))- And because <p(p)^(p(q) we

have </>(p+rg)=c/)(Mi)-|-0(A*W-|-A*(''))=O-r-inf{c/)(p), c/>(g)}. Hence

0(rV(i,+r<Z))anc'<Mg/(£+rg))are positive and pD+qD= (p+rq)D. It

follows that D is a Bezout domain. Moreover, if (ax, a2, • ■ ■ , a,+x) =D,

then there exist elements bi of D such that (a,, a,+i) = (at+bias+x) for

* = 1, • • • , s. Hence (ai, • • • , a,+i) = (ai+M.+i, • • ■ , a,+b,a,+x)

and 1 is in the stable range of D.

Let G+ denote the set of positive elements of G. By an ideal of G

we will mean a nonempty subset I of G+ with the following properties:

(1) 0£7, (2) if aEI and b>a, then bEI, (3) if a, bEI then
inf {a, b}EI- If, in addition, the complement of 7 in G+ is closed

under addition then we say that / is a prime ideal. With each ideal I

of G we associate the subset c/>_1(7)U {0} of D. It is straightforward

to check that this gives a one-to-one inclusion preserving correspond-

ence between the ideals of G and the proper integral ideals of the

Bezout domain D. Moreover, J is a prime ideal of G if and only if

^(■OWJO} is a prime ideal of D.
We proceed to construct a lattice-ordered abelian group G which

has the following properties:

1. There is a chain I0 <Ii < • • • < A, of prime ideals of G but no

chain of longer length.

2. Every prime ideal of G is an intersection of maximal ideals.

3. For each ideal I of G there are only finitely many prime ideals

of G which are minimal with respect to the property of containing I.

It follows from our previous observations that a domain D con-

' We say that D is a Bezout domain if every finitely generated ideal of D is principal.

2 For the proof of this fact and for several other helpful suggestions concerning this

paper, I wish to thank Jack Ohm.
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structed by means of Jaffard's theorem which has G as its group of

divisibility will have Krull dimension M + l, each proper prime ideal

of D will be an intersection of maximal ideals, and each ideal of D

will have only finitely many minimal prime divisors. Since D is finite

dimensional this last property implies that D is /-noetherian [2].

Moreover, D will have /-dimension either n or n + l. If G has in-

finitely many minimal primes then (0) is an intersection of maximal

ideals of D and dim/P=w + l; otherwise dimjP=n.

We will say that a group G which satisfies property 1 above has

dimension n.

Our construction of a group G which has properties 1,2, and 3 is

based on the following two lemmas.

Lemma 1. Let {Ha} be a family of lattice-ordered abelian groups and

let 77 be the weak direct sum of the Ha's, where 77 is ordered by defining

{aa} = {ba} if and only if aa^ba for each a. Let pa: H^>Ha be the

canonical projection homomorphism. Then each prime ideal Q of H is

of the form p~1iQ0)r\H+ where Qa is a prime ideal of some Ha and H+

is the set of positive elements of H.

Using properties of the weak direct sum and the definition of a

prime ideal in H the proof of Lemma 1 is straightforward and will be

omitted.

It follows from Lemma 1 and the fact that elements in the weak

direct sum have only finitely many nonzero coordinates that if {77<r}

is a collection of lattice-ordered abelian groups such that each Ha

satisfies properties 1, 2 and 3 above, then 77= ^2„ Ha also satisfies

these properties. Moreover, if there are infinitely many a then H

has infinitely many minimal primes.

Lemma 2. Suppose that H is a lattice-ordered abelian group which

satisfies properties 1,2, and 3 stated above. Assume in addition that H

has infinitely many minimal primes. Let T be a totally ordered archi-

medean group and let K = T@H where we order K by defining (a, h)

= (a', h') if and only if a>a' or a = a' and h^h'. Then K is a lattice-

ordered abelian group having dimension n + l and K satisfies properties

2 and 3 stated above.

Proof. We note first that Q={ia, h)EK\a>0} is the unique

minimal prime ideal of K and that every ideal of K compares with Q.

It is clear that Q is a prime ideal; and that Q is minimal follows from

the fact that if a, a'ET with a>0, then for some positive integer n,

na>a'. If (a, h)EK+ — Q then a = 0 so (a, h) <q for any qEQ- Hence

any ideal containing (a, h) contains Q, and it follows that every ideal

of K compares with Q.
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If / is an ideal of K which properly contains Q then let In

= {hEH\ (0, h)El\- Ih is an ideal of H and I is a prime ideal of K

if and only if IH is a prime ideal of H. The mapping which associates

/ with Ib is a one-to-one inclusion preserving correspondence between

the ideals of K which properly contain Q and the ideals of H. Since I

is prime if and only if Ih is prime, we conclude that each nonminimal

prime of K is an intersection of maximal ideals and that the ideals of

K satisfy property 3. Finally, the fact that H has infinitely many

minimal primes implies that Q is the intersection of the primes of K

which properly contain Q. Hence K also satisfies property 2. This

completes the proof of Lemma 2.

By starting with a totally ordered archimedean group and apply-

ing Lemmas 1 and 2 we can now obtain for any positive integer w a

lattice-ordered abelian group Gn which satisfies properties 1, 2 and 3

and has a unique minimal prime. The domain Dn constructed by

means of Jaffard's theorem which has Gn for its group of divisibility

is /-noetherian, has 1 in the stable range, and has /-dimension n.

Moreover, the fact that Dn is a Bezout domain and hence is Priifer

implies that Dn has the same prime ideal structure as any Kronecker

function ring D* of Dn [4]. In fact each ideal of D* is the extension

of an ideal of Dn and each ideal of Dn is the contraction of its exten-

sion. It follows that D* is also /-noetherian and has /-dimension

w. This gives an affirmative answer to the question raised in [2] con-

cerning the existence of /-noetherian Kronecker function rings of

arbitrary /-dimension.
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