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1. Introduction. This paper concerns uniqueness questions for

boundary value problems involving second order parabolic equations

d2u        _, du      du
(1) Lu= X, aa(x> 0-r- 2-, a>(x> 0-= °>

dXidXj dXi        dt

as well as certain extensions of the well-known maximum principle.

In the usual type of boundary value problem, the domain of the solu-

tion lies in the upper half plane t>0 and part of its boundary lies on

the hyperplane i = 0. The data prescribed on the latter part are re-

ferred to as initial data. The present paper, on the other hand, treats

domains extending indefinitely in the t—>— °o direction. Thus instead

of initial-value problems, we consider "generalized steady-state prob-

lems" (see [2]) or "problems without initial conditions." A particular

case of such a domain is the cylinder flX(— °°, »), where ft is a

bounded domain in x-space. Some existence and uniqueness questions

for boundary value problems in such a domain were treated in a

previous paper [2] by the author. Another special case is the comple-

ment of such a cylindrical domain; here some obvious results can be

obtained by combining the maximum principle developed in our

Theorem 4 with the technique of Meyers and Serrin [4]. (See also

[3] for certain results in one space dimension when the solution is

periodic in time.)

In the present paper, however, the domain of the solution (which

we hereafter denote by 33) is generally allowed to be noncylindrical;

the goal in fact is to obtain geometric properties of 2D which guarantee

uniqueness within the class of bounded solutions.

We shall usually require no regularity properties of the coefficients

of L other than local boundedness, and for our general result (Theo-

rem 3) we assume only that L is locally parabolic. We shall be con-

cerned with functions satisfying PwSiO. The well-known standard

weak maximum principle holds for such functions if the derivatives

appearing in the operator are continuous; we shall designate these

functions by the term subsolutions.
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Let us call 3D a domain of uniqueness lor a specific operator L il the

following maximum principle holds:

sup   uix, t) =     sup    uix, t),
£>n[*<r) d»n[(<T]

for every r and every bounded subsolution u in 3D.

We assume throughout that each cross-section 3DP\{< = r] is con-

tained in a sphere of finite radius Rir). Therefore in proving that a

certain domain is a domain of uniqueness, we need only verify that it

satisfies the definition for large enough (— r). For if the condition in

the definition is satisfied for t<—K, say, then the standard maxi-

mum principle yields the verification for all other t.

It will be shown that if P(t) does not grow too fast asr—->— oo , then

3D is a domain of uniqueness. For example for the equation

Am — ut = 0,

this is true if R2ir) ^k\r\ log log|r| for some constant k<l. How-

ever, an exampleshows this is not true for any k if the factor log log | t |

is replaced by log | t| . Essentially the same result is true for all uni-

formly parabolic operators (Theorems 1 and 2). However, sufficient

conditions for 3D to be a domain of uniqueness will be given for the

general case.

Regarding boundary value problems, the question here is unique-

ness. The other question of existence of a bounded solution of the

equation Lu=0 satisfying bounded boundary values on 33D is easily

handled if one makes the following

Assumption A.

(i) The coefficients of L are Holder continuous;

(ii)  For every r the initial value problem

Lu = 0inT>r\{t>T},

smooth boundary data given on d3DPi{£>r}

and initial data on 3DPi{^ = t} can be solved.

Namely, one solves the initial-boundary value problem with zero

initial data on t=r, then lets t—>— °o. Schauder estimates and the

usual maximum principle insure that the solution approaches a limit,

which will be a bounded solution on all of 3D. Existence for inhomo-

geneous equations could be treated in a manner analogous to that

in [2].

Similar considerations yield the following proposition:

If 3D is a domain of uniqueness, L and 3D satisfy Assumption A, and

3D'C3D, then 3D' is also a domain of uniqueness.
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Proof. If 33' is not a domain of uniqueness, then there exists a

subsolution u assuming some positive values, but nonpositive on d33'.

Defined, t) =max[0, u(x, t)], and extend v to be zero in 33 — 33'. For

each r, consider the solution ur of Lu=0 in S>r\{t>r} vanishing on

333 and equal to v for t = r. By the Schauder estimates, asr—>— <*> uT

converges to a solution in 33 vanishing on the boundary. By the stan-

dard maximum principle ur^v ior each t and t>T, so the limit will

assume positive values, contradicting the assumption that 33 is a

domain of uniqueness.

Throughout the paper, we use the following notation:

_^   2 du du
x = (xx, ■ ■ ■ , xn),        r2 = 2_, Xi,        Ui =->        ut = — >

dxi dt

and follow the summation convention. For dimensional reasons we

shall prefer to write the basic operator in the following form, rather

than (1):

(2) Lit = aijUij + (bi/r)ui — ut,

where cz.y and bi are functions of x and t. We also define

B(x, t) = au(x, f) — bi(x, l)xi/r.

We assume that a,-,- and bi/r are locally bounded.

2. The uniformly parabolic case.

Theorem 1. Let L satisfy ci;y£i£>iijUo|£| 2, where uo>0, and biXi^O.

Then 33 is a domain of uniqueness for L if

(3) r2 ^ k \t |   log log | 11

for some k <p0 is satisfied for all points (x, t) in 33 for which ( — t) is large

enough.

Remark. The condition biXi^O could be replaced by the inequality

A(x, t) —B(x, t) 5^0. The latter is implied by the former, since for any

positive definite quadratic form, <i»>£»^y/] £| 2^au.

Theorem 1 is a corollary of Theorem 3 (in the latter set D = C = 0),

hence will be given no separate proof.

Theorem 2. Let L be a parabolic operator with Holder continuous

coefficients and with A(x, t) and B(x, t)/A(x, t) bounded from above.

Then no domain described by an inequality
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(4) r2 = k\t\ log | / j

(111 large enough) for any k > 0 is a domain of uniqueness.

Proof. Let

uix,t) = 1 - \t\-e<pir2/a\l\)       7<0),

where (pin) is the confluent hypergeometric function (pin) =<J?(a, I; n)

(see [l] for notation), and a, 8, a, and c are positive constants to be

chosen later. Applying the operator L, we find

Lu = A[urr — i\/r)ur] + Bil/r)ur — «<

Known properties of <p (see [l]) are

(i) (p,(p',(p"^0.

(ii) ?(0) = 1.
(iii) ^(7,) = (r(c)/r(a))ev-7i+0(7;-1)),   ,,-*».
(iv) rj<p" + ic — n)(p'— atp =0.

Subtracting a multiple of (iv) from our expression for Lu, we find

*"T"'r-{[(c-)-(=-0>-(£-H-
We now choose c = supP/2^4 (and positive), a^sup 4^4, and a=/3.

Thus using (i), we obtain that Lu^O. We now investigate the domain

3D on which u > 0. Clearly u = 0 on a manifold described by (pin) = \ t\ ".

Taking logarithms and using (iii), we find that for large \t\,

,?(l + o(l)) =/3 log t,

or

r2 = ap\t\  log\t\ (1 + 0(1)).

Although a has already been fixed, we are free to choose B as small as

desired. Thus 3D can be taken to lie within any domain of the form (4).

Since u is bounded by 1, we have that 3D is not a domain of unique-

ness. Since Assumption A is satisfied for every domain of the form (4),

such domains are likewise not domains of uniqueness.

It may be noted that in case A and B are constant, the above con-

struction yields an exact solution of Lu =0.

3. The general case. We introduce the further notation
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Rf>(t) =   | /1 log log | /1 (t<0),

C(x, t) = max[0, (A - B)/r],2

D(x,t,r) =C(x,r)\t\/R0(t),

and let k(t) he a function such that £(0 = 1 and

iA2(x, t)
k(t) ^    inf   -^—-

,grSo (D(x, t, t) + (D2 + IA)1'2)2

Note that when biX{ ̂ 0, C = D = 0 and k (t) ^ inf A (x, t) .

The following theorem gives a condition for uniqueness in the case

k(t)R%(t) is a nonincreasing function of t (that is, a nondecreasing

function of \t\, since t—>— =o). An analogous condition could be given

when kR% is nondecreasing (this case can always be brought about

artificially by choosing k to decrease rapidly enough as t—»— <»).

Theorem 3. Let L be parabolic and let k(t)Rl(f) be nonincreasing. Let

X>be a domain in which every point with large enough \ t\ satisfies

(5) r2^k(t)\t\  Ioglog| /| (1 - 0

for some e > 0. Then Si is a domain of uniqueness.

The proof uses the following

Lemma. Let L be parabolic, and u(x, t) a subsolution in a domain 33i,

which is contained in a cylinder r^R,0St<r. Assume u is continuous

in 33i and is nonpositive on d£)xr\ {0 <t <r ]. Then

(6) u(x, t) ^ (1 — exp[—clR2/t]) max u(x, 0),

where

a~ [_», \l+rC/P/J  '

Proof. It is sufficient to give the proof for the case P = l, for if

R**l, set $ = s/P, s = t/R2, p=\t\=r/R, cz,-y(£, s)=aiy(x, /), h
= bi(x, t), m(£, s) =u(x, t). Then

d2u        bi   du      du
an-+-^ 0,

dS.-dl/       p    d£,-       ds

in the domain p5gl, 0<s<t/P*. Hence by the result for P = l,

«(£, s) ^ (1 —exp[ —a/s])Max u(x, 0), where

2 C is bounded at r = 0 due to local boundedness of bi/r and remark following

Theorem 1.
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A      l~l
a =    inf-—        ,

.       1 + sCJ

A (7 s) = dijUj/p'- = A ix, t), and C(£, s) = Max [0, (A-B)/p] =RCix, t).

Thus
A      "I"1

5 =    inf-        = a,
_»! 1 + /C/P_

and (6) follows.

So now let P= 1 and set z/(x, i) = l — exp[— a(l — r)/t]. Then

a r . (-a A       A - B      1 - r)
Lv = — exp[-«(l - r)/t] {--\-+-} .

t \    t r t    )

The quantity in braces is bounded above by

H-aA + 1)7) + C = il/t)[-aA + 1 + tC],

which is ^0 provided a^ (l+tC)/A. But this is true from the defini-

tion of a, provided 0 57£=r. Thus Lvr^O. Also notice v = l for t = 0,

v = 0 lor r = l, and v>0 elsewhere. Let w(x, t) = Mvix, t)—u, where

il7=Maxw(x, 0). The lemma is true immediately if Mf^O, so we

assume M> 0. Clearly w(x, 0) ^ 0, w = 0 on SSDiH {0 < t <r}, and (- w)

is a subsolution except at r = 0, where v is irregular. Suppose w as-

sumed negative values. Then the minimum of w in 3Di could not be

assumed on dSDif^ {O^^t} . Furthermore, by the maximum principle

it could not be assumed at any interior point at which w is regular,

nor for i=r, except possibly at r = 0. This leaves only the possibility

of a minimum at r = 0. But this is likewise excluded, because it is clear

from the definition of v that wxv as a function of Xi, suffers a negative

jump discontinuity at r = 0, which cannot occur at a minimum. Thus

w^0 and
m <i Mv <J Mil - exp[-a/t]).

Setting /=r,we obtain the conclusion of the lemma.

Proof of Theorem 3. Define, for t = l, 2, • • ■   and some B>0,

ti=-ef,i,

Ait = U-i-ti= | h\ (1 -er?),

(7) 77= |/,|(loglog|i,|)^.-)(l-e)

= Aillogifii)kiti)il - e)/il - e-f>).

Let uix, t) be a subsolution in 3D satisfying it ^ 0 on 33D, and define

Mi =    sup    uix, t/).
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Consider the cylinder 2-ii'- r<R*, k<t<ti-x. Since kR\ is nonincreas-

ing, R2,=k(ti)Rl(tO(l— e), and 33 lies within r^kRl(l— e), we know

that 33P; j ti<t<ti-x) is contained in 2~2i- Hence by the lemma,

(8) Mi-x ^ (1 - exp[-aiR2i/Ait])Mi,

where

.  r      A      t1
oti =inf   -

s,. Ll + AitC/Ri_

However, we know that

Ait \tj\ (1 - f")

Ri ~ R0(ti)(k(ti)y'2(i - eyi*'

Thus

a{ ̂        inf   (-.—:-JI    ,
_ GUi) \l+y\ti\ C(x,t)/R0(ti)(k(ti))1'2/A

where G(t)= {r<R0(r); r<t<0} and y = (1 -<r^)(i_e)-i/2. This is

because ^< is contained within G(ii). Next we recall that for all

(*, t)EG(r),

2A(x,t)
(kW fg -K-^-

D+ (D2 + 4A)1'2

Thus

(k^))1'2 S ((D2 + 4A1'2 - D))/2,    and    k + Dk1'2 ^ A,

or
*(t) ^ .4/(1 + P^/zfe1'2).

We set T = <j in this inequality, and take the infimum over G(tO- We

thus obtain

(9) k(tO ^ l/cti,

provided ji is chosen large enough so that 7^1. It follows from (7)

and (9) that

aiR]/Ait ^ (k(ti))~log(pi)k(ti)(l - e)/(l - i*)

= log(#)(l - e^V* ^ log(Pi).

Hence from (8),

M,--i ^ (1 - (/3i)-x)Mf.
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From this it follows that

i

Mi>   II  (1 ~ ifij)-i)~1Mm       ii>m).
/=*m+l

However, the product 11°° (1 — (Bj)'1)-1 is divergent; hence if iVf,„>0

for any m, u will be unbounded. Thus u is either nonpositive or un-

bounded. This shows that 3D is a domain of uniqueness and the

theorem is proved.

We conclude with a maximum principle for cylindrical domains.

Theorem 4. Let the parabolicity of L be uniform in t. Also assume

that (A —B)/r is bounded from above uniformly in t. Then any cylindri-

cal domain with finite cross-section is a domain of uniqueness.

Proof. Let u(x, t) be a subsolution nonpositive on the boundary,

and define A7 = supx u(x, —i). The uniformity assumptions and the

lemma imply that there is a k < 1 such that Af,_i <i nMi for all i. Thus

the Mi either all vanish or grow exponentially in i, and the theorem is

proved.

The uniformity assumptions could of course be considerably weak-

ened. However, we mention the example

1
-Mn — Mt = 0,
1 + /2

which has the solution w(x, t) =sin x exp( —tan_1i) vanishing on the

boundary of the strip 0 <x <tt. The strip is therefore not a domain of

uniqueness for this operator.
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