A LEMMA ON THE GALTON-WATSON PROCESS
AND SOME OF ITS CONSEQUENCES

F. PAPANGELOU!

Many of the known limit theorems on the Galton-Watson process
are immediate corollaries of the elementary lemma given below. This
lemma enables us to calculate easily limits of various types of condi-
tional distributions, special cases of which had earlier been tackled
by diverse and more complicated methods.

Let F(x)= D ;2o p1;#/ be the distribution generating function of
the offspring of one individual in a Galton-Watson process. We
assume 0<p10<1. Throughout the present note » will denote the
least positive integer such that p,>0. We set Fo(x) =%, Fnp(x)
= F(F,(x)) and denote by ¢ the probability of extinction of the
progeny of one individual. Then ¢ =1o0r <1accordingasm = Y .=, jpy;
is =1 or >1. Further F,(x) T¢if 0=x<gq, F.(x) | ¢if g<x <1 while
F(¢) =g, F(1)=1, [3]. The terms “increasing” and “decreasing” as
used below do not mean strict monotonicity.

It is well known that F,(x)*= Z;lo g')xf so that

w 1 di ‘
1) pii = T da [Fa(@) Jomo
Further
Fl(0)=F/ ()= --- =F"Y%0)=0 foranyn
and
2) F.”(0) = F'(Faca(0))F1(0) > 0.

It is easy to prove by induction on j that for every #=1 and every
jz1

B)  FO#) = 4nj(@) + P Fass () FN(2), —1<2z<1,

where A4, ;(x) is a power series in x with nonnegative coefficients.

LEMMA. For fixed j=1 the sequence p¥/p™, n=1, 2, - - - is in-
creasing.
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Proor. By (2) and (3)

1 g 1 .
w1 ;,-Fiﬁl(m j—,[An+1.j<0)+F’<Fn(0))F§”<0>]

1j

(n+1)
" 1 = ™

1r B 1 /!
ﬁ Fr1(0) [7 F'(Fn(0))Fa (0)]

1 o
_."Fn’ (0) (n)
J! P

1 . (n) ’
I:__ P )(0)] i
r!

Let 7(j) =limu.., p7/p{ (j=1) and note that the sequence

v

n+1 n 1 r 1 r
e OO BT B LX)
r r.

is increasing and converges to F/(q). We set v =F’(g). Then v <1 if
and only if m#1; if m =<1 then y=m.

The following theorem can be pieced together from results either
explicitly or implicitly contained in the union [4]U[5]\U[6]\U([7]
U[10]U[11], but the methods of these authors are sometimes
sophisticated, and each is applicable to only one of the three cases
mZ1. The lemma provides the basis for a simple unified proof.

THEOREM. w(j) <4 o for all j. For any 121, j=1

@  lim g =i TG k=0, £1,42,- )
and
©) yr(§) = 2 w@Dpy, =1

=1
{m(j)} is the unigue (to within a constant factor) nonnegative solution

of (5). The generating function A(x) = Y ., w(j)x? is finite in (—1, 1)
and A(1) <+ o or =+ » according as m <1 or m=1. Further

(6) A(F(x)) = vA(x) + A(F(0))

for every x&(—1, 1) and A (x) is the unique (to within a constant factor)
solution of (6) in the interval [0, q) which has a nonnegative and increas-
ing derivative.
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PRroor.

(n) (n) (n) (n)
pii = > Pimding © ¢ Panye

(hyohg,« - h);0sh s5ihythot - o thi=]

Separating those terms having some k%, equal to j we get

(n) (n)

(n) (n)

Pii (), -1 P1j Piny - 0 Pang
™ i(p10) ™ 2 )
1r 1r ("1-'12. s k) 05 hy<jshythet o - thi=5 1r

The limit of the first term on the right is ig*!7(j) while the limit of
the second term is 0 because each summand has at least two &,’s
greater than 0, say h,, k,;, and hence

(n) (n) (n) (n) (n) (n)

Piny - - P/ Prr [Pus,/P:r ~pin, — w(hs) 0.

Now (5) follows from the lemma and

(n+1) (n+1) (n)

1r P Z Pn
(n) (ntD) (n) Pii-
1r 1r =1 p

If 0 <x <q then there is an z such that x < F,(0)=p{" <q¢ and
iteration of (5) yields

r0) = A 2 X a@iow) o 2 o 3w’
=1 =1 =1
Hence 7(7) <+  for every 7 and A (x) is finite in (—g, ¢). It is more
difficult to show that if ¢ <1 (i.e. if m>1) then A (x) is finite in (g, 1).

Let ¢ <x <1 and recall that F,(x) | ¢. By the mean-value theorem
and (2)

oc ] (n) —_ ’ A
S a(ai = lim 3 ?_ll_xi = lim w < lim F"_(x)i
=1 w1 P l F(r)(O) n—wo FO(0)/r!
F'(x)F'(F(x)) - - - F'(Fn_1(x))

= (r)x lim
nse FOO)F(F(0)) - - - F'(Fay(0))

so that, by the well-known criterion for infinite products, it is suffi-
cient to prove Y ([F'(F.(x))/F (F.(0))] —1) <+ » orequivalently

1 { F'(Fa(x)) — F'(Fa(0))} <+.Applying repeatedly the mean-
value theorem we obtain
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F'(Fa(x)) — F'(Fa(0))
S F'(Fa(x))(Fa(x) — Fa(0))
S F"(Fa(%))Fu-1(F (x)) (F(x) — F(0))
= F"(Fa(@)F/1(F(®)(x — F(x))-[F(x) = FO)]/[x — F()]
S F(Fa(%))(Fai(x) — Fa(®))-[F(x) — F(0)]/[x — F(%)]
S {F (Fas(9)) — F'(Fa(@))} - [F(x) = F(0)]/[x — F(x)]
and clearly 3o { F/(Faoa(x)) — F'(Fa(x)) } = F'(x) — F'(g).
Multiplying (5) by x¥ and summing over j we find

)

vA(x) = Z 7(1)(F(x)* — F(0)Y) = A(F(x)) — A(F(0))
so that (6) holds in (—1, 1). This implies
g AEE) = 7A@+ AEO )
-1 <<

hence
® A'(Fa(x))Fy (x) = y"A4"(x)
and
A" (Fana(®) F, (x) . F (%)

lim—,—— m v — = limy————"77—=

e A'(Fa(x)) o Flo(x)  aoe  F/(Fu(x)F, (x)
when 0=<x <1. (For x =0 we write F,(0) = F,_1(x0) where x,= F(0),
because F,/ (0)=0, 4’(0)=0if r>1.)

Let B(x) be another solution of (6) in [0, q) as described in the

theorem. Then
9) B'(Fa(%))/ A" (Fa(x)) = B'(x)/A'(x), 0<=z<q.
Set

¢ = B'(F(0))/A'(F(0)) = B'(Fa(0))/ 4" (Fa(0)), m=1,2,---.

If x is any point in [0, ¢) there is »=0 such that F,(0) £x <F,1(0)
so that by (9)

B _ BE) _ BEwwn(®) _ A Enan®)
A'(x)  A'(Fu(2)) = A'(F.1a(0)) A" (F4n(0))

(when n—+ ) and similarly B’(x)/A’(x) 2¢. Thus B'(x)/A4’(x) =c¢,
B(x) =cA(x)+c'. Since B(x) satisfies (6) B(0)=0, ¢'=0.
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The uniqueness of {1r(j)} in (5) follows from the fact that if
{a(j)} is any nonnegative solution then Z;ila(j)x" is finite in
(—g¢, q) (as before) and a solution of (6) in [0, ¢). Finally by (7) 4(1)
is finite if m <1 and infinite if m =1. In the case m>1

n)

i — F,.(0
AQ) = Sx() = in 522 ~—-1;(—”)—Q= + o

j=1 n— 0 1r

because 1— F,(0)—1—q while p{®—0. This completes the proof.
We shall call the process R-positive [12] if the sequence

(n)

1r 1 1
10 P = S FOQFEOFE) - - F(Fra®) —
Y r. Y

(which is decreasing) has a positive limit. Clearly

(n) (n) (n)

pl' _ Plf plr

»  F" FJ()
PIJ )_1 < . )..1 1
=) L Zire) =
so that we have R-positivity if and only if 4'(q) <+ .

(11)

COROLLARY 1 [11]. If m> 1 then the process is R-positive.

When m <1 the necessary and sufficient condition for R-positivity
was shown in [11] to be

(12) 2 jlog )py < + .
J=1

If m <1 the necessary and sufficient condition for 4”(1) <+ « is
F'’(1) <+ «; this follows from the equality

(n) n

1j Fn” 1 1 - .
>3- pm LNy O i

i=1 Py P2 vl — )
COROLLARY 2. For 0=« <q and 121 the sequences ) ;. f}')x’ /p™,
Do it/ p®, n=1,2, - - - are increasing and
(13) lim ) “=of = ig! 2 w(j)a,
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(n)

(1) lin 3505 = i e
If g<1, (13) and (14) hold for every xC [0, 1).
In fact
gpff)x’ = Fa®' = Fu0) = (Fu(@) — Fa(0))
(Fa@) T+ F,.(0>“‘>
( PP ) Fa@ 4 -+ F @
Similarly

Z] ,(,”)xJ = x— {F (x) } = xiF, (au) F (x) = 1F,.(x) Z] .
j=1 I=1
We now illustrate the use of the lemma and Corollary 2 in the
derivation of limit theorems. Let Zo, Z1, Z;, - - - be a Galton-Watson
process with generating function F(x) and denote by T the time to
extinction (T'=4 o in case of survival). If P[Z,=1]=1 then the
results below follow directly from the lemma. We prefer to base the
proofs on Corollary 2 and the continuity theorem [2, p. 262] and
thus widen the scope of these propositions by allowing P[Z,=1] =X\,
where >, N\;=1. We introduce
AssuMPTION A. Either m=1 and D ;,i\<+ oo or m>1 and
> .9\ is arbitrary and prove:
(I). Let k=0 be fixed. Under Assumption A
lim P[Z,=j|ln+k<T <+ =]
7n—

(13) . .
= (5) Z_: ping ('yk 2 r(’t)qh)

h=1

which is zero if m=1 and a probability distribution on {7} if m=1.
ProOF. Note that D _», pWgt = Fi(g)i—pih =g’ — (p{5)7 so that

PlZ,=jln+k<T <+ =]

o () i *) -~ (n+k)
= > Npi; ¢ — (o )] 2 2 N g~
=1

h=1 =1

The corresponding generating function is easily seen to be
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(n) © i
S 2 i;’) @' |- =a[ £ ; » ,";’x)]
=1 §—

Jj=1 1r Jj=1 1r

(n+k) © (u+k)

(n) Z )\ E (n+k)

=1

which by Corollary 2 and Assumption A converges to

< rig oo N1 i
3 g Ty - )l 5T ()(g’ — <p{f,’>)
¢ i)\;iqi—l > w(h)gh T E"(h)q

i=1 h=1 =

That (15) is a probability distribution when m =1 follows from (5).

The special case m<1, k=0, \;=1 is the well-known theorem of
Yaglom [13], proved originally under the assumption F"/(1)< + «
and later extended to the case F”/(1) =+ in [4] and [5] indepen-
dently. The case m>1, k=0 is due to E. Seneta and D. Vere-Jones
who proved a general result on R-positive chains [11, Theorem 4.2,
p. 417].

(II). Under Assumption A the conditional mean

2 iPlZ.,=j|n+k<T<+ ]
=1
converges to + © if m=1 and to

a6 Tint) S oid' /(v Enting’) =

j=1 h=1 h=1

A'(q) — A (1’10)
vEA(q)

if m>~1. Thus the limit is finite if and only if the process is R-positive.
Proor. If m##1 we work as in (I), using (14). If m=1 (g=1) then
for every J

S jP[Za=jln+ k< T <+ ]
j=1
’ 0 00 P( 0 P<n)
iy i (k)
2N 2 (:)‘Z%Z (i,(w)
=1 j=J Pu 1=1 J—f 1
(M-k) (n+k)

0 °0
Tam Z Ai g (n+k)

1r i=1

v

J

and the result follows from the fact that Y ;2 w(j) = + . The case
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m<1, k=0, =1 yields m"/(1—F,(0)— >, jx(j)/ D501 7(5)
8], [4].
(I11). Under Assumption A if k=1 is fixed
(k—1)

(17) im P[Z, =j| T = n + k| = =(j) E Pin  Pro ‘)'k_l i’f(h)f’ho

n— o h=1

which is always a probability distribution on { j}. The corresponding
conditional mean converges to

(18) ZJW(J) Z P]h )Pho 'yk_1 Z T(h) pro < + o -
h=1 h=1
In fact
Pla =i\ T =n4 4= Sl 320t [ 2 Eno
=1 h=1 h=1 =1

where D 2, p~Vpuo=p® —p& = F,(0)I— F;_1(0)7. We proceed as
in (I) and (II) Note that pro= (p10)*. The special case m=1, k=0,
M =11in (17) is the union of Theorems 1 and 2 in [10].

(IV). Letting k—+ o in (15), (16), (17) and (18) we find the fol-
lowing limits:

In (15), if m#1,

w() i & b . 1
e lim 3 S gt = 4@ ie )
— o h=1
x(h)g"
Z‘; g

by (11) and (13). This is positive if and only if the process is R-posi-
tive, in which case it agrees with the result in [11].

Similarly in (16), if the process is R-positive the limit is 4'(g)~!
D1 3% (). In (17) the limit is A7 (q)~Yig~'w (§).

In (18) if the process is R-positive then we obtain A4'(g)™!
- > 21727 'w (). If the process is not R-positive the limit is 4+ . In
fact, with xo= F(0), (18) becomes

o0

2 ir(DFu(0)i — Fiy(0)7]

i1 _ A'(Fe(0)Fi(0) — A" (Fia(0)) Fisa(0)
V1A (o) - V=1 A (o)
S [A,(Fk—l(xo)) 1 A'(Fk—z(xo))]‘Fk—l(O) ’
B ! v ye? A (x0)
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Using (8) and the equality Fi_,(xo) = F'(Fr_2(x0)) Fi_o(x0) we reduce
the last expression to

v — F'(Fi—z(x0)) A’ (%0)F-1(0)
Fi(w) 7P (Facs(ao) A(w0)
and this converges to + « because by the mean-value theorem
v — F'(Fr_s(x0)) _ F'(1) — F'(Fy_s(x0)) > F""(Fr—a(0)) (1 — Fis(%0))
Fy{_s(x0) Fy_s(20) B Fi{_s(w0)
= F'"(Fr_o(x0))(1 —20) and F'(1) =+ o
(V). Letus now assume P[Z,=1]=1. E. Senetaand D. Vere-Jones

[11] considered the expected proportion of time spent in the state j
up to time %, under the conditionn <7 <+ «:

1i(n) = — Z(pu > pi ”q") kE P
=1

=1 k=1

If the process is R-positive this converges to 4’(g)~Yig = () [11].
We shall prove that if the process is not R-positive then lim,.,, 7j(n)
=0,7=1,2, - - - . Let m<1 and note that for fixed N

1 T
- — FUOFFQ) - - - F(Faa(0)

1r

lim ———— = lim
nowe F[(FN(0)  n—w F/(Fy(0)F (Fy41(0)) - - - F'(Fayn-1(0))
(19)

1 .
-~ FO0)F'(F(0) - - - F'(Fy-10)) 0

1r

= lim =
e F(Fa(0) - - F'(Fayn-1(0)) N
Note also that when n>p
- 1
) =— - F OF (F(0)) - - - F'(Fas(0))
= p; F/(F(0))F' (Fryr(0) - - - F'(Faes(0)) = puy Fars(F.(0)).

Thus when N is fixed and »> N we have

(n—v») (n—v)

WERES LN A MW X8

= P \F,_,(F,(0)) k_l o k=1 P

The denominator converges to 9 .., w(k). For v>N we have
F)_,(F.(0)) = F,_,(Fx(0)) so that the numerator is
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X N N
< — o)+ — d ( ’ ? )
n .§( ) n ,_;“ P \Fi_.(Fn(0)) IE 2

By (13), (19) and the abelian lemma [11, p. 409] the lim sup,.. of
the numerator is (7)) (¥ /v¥)j 2 i, (k) and this holds for every
N.

If m =1 one must write

0

) 1 n—1
2 b ) — 2 an(»)

k=1 1r n v=0

7i(n) = T
i?m E/(Fn(0)  an(n)
1k
k=1
X -
P b+ 2 —aw(n—v)
r=1 v=N+1 1r

where

_ Pir =\ Pir
av(n) = o ) ;

and apply Lemma A in [1, p. 20].

The quasi-mixing consequences of (4) in the irreducible case will
be indicated elsewhere (cf. [9] for the stochastic case). In concluding
the author wishes to express his indebtedness to E. Seneta and D.
Vere-Jones for the privilege of reading preprints of some of their
papers.

ADDED IN PROOF. In connection with the lemma, G. E. H. Reuter
who read a preprint of the present note has observed that the se-
quence p{P/(p{) — o V) = FP (0)/7{(Fa(0) = Fara(0)), n=1,2,
is also increasing (use (3) and the mean value theorem) and can be
used interchangeably with p{7/p®.
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