A REMARK ON A THEOREM OF A. WEIL

MORIKUNI GOTO¹

1. The purpose of this paper is to prove the following theorem.

Theorem. Let G be a connected semisimple Lie group without compact components. Let H be a subgroup of G such that there exists a compact subset K of G with G = HK. Let σ be a continuous automorphism of G which reduces to the identity on H. Then σ is the identity automorphism of G.

This is a generalization of a theorem of A. Weil in [4], and is related to a theorem of A. Borel in [1]. The author obtained the theorem by globalizing the infinitesimal method of Weil in [4].

2. Let G be a connected semisimple Lie group. Let A(G) be the group of all continuous automorphisms of G. A(G) is a Lie group with respect to the compact-open topology. Let I(G) be the subgroup of A(G) composed of all inner automorphisms. Then I(G) is a closed normal subgroup of finite index in A(G). For g in G we define Ad(g) by $Ad(g)h = ghg^{-1}$ $(h \in G)$. Then $G \ni g \mapsto Ad(g) \in I(G)$ gives a continuous homomorphism, whose kernel coincides with the center of G. Let G be the Lie algebra of G, and let G₁, G₂, G₂, G₃, G₄ be the simple factors of G₅: G₆ = G₁ G₇ G₈ G₈ G₈ (direct sum of ideals). Let G₈ G₈ respectively. G₈ be the adjoint groups of G₈, G₉, G₉,

$$I(G) = I(\mathfrak{G}) = I(\mathfrak{G}_1) \times I(\mathfrak{G}_2) \times \cdots \times I(\mathfrak{G}_k)$$

(direct product of closed normal subgroups). We denote by ϵ the identity automorphism of G.

LEMMA 1. Let G be a connected semisimple Lie group. Let N be a nontrivial, i.e., $N \neq \{\epsilon\}$, normal subgroup of A(G). Then there exists an i $(i = 1, 2, \dots, or k)$ with $N \supset I(\mathfrak{G}_i)$.

PROOF. First suppose that $N \cap I(\mathfrak{G}) = \{\epsilon\}$. Let σ be in N. For g in G we have $Ad(g)\sigma = \sigma Ad(g)$, which implies that $\sigma(g^{-1})g$ is in the center of G. On the other hand, $G \ni g \mapsto \sigma(g^{-1})g$ gives a continuous map from the connected space G. Since the center of G is discrete, we have

Received by the editors September 11, 1967.

¹ Research supported in part by NSF Grant GP 4503.

 $\sigma(g^{-1})g = \text{ the unit element for all } g \text{ in } G, \text{ i.e. } \sigma = \epsilon. \text{ Hence } N = \{\epsilon\}.$ This contradiction implies that $N \cap I(\mathfrak{G}) \neq \{\epsilon\}.$

Since each $I(\mathfrak{G}_i)$ $(i=1, 2, \cdots, k)$ has no proper normal subgroup, i.e. $I(\mathfrak{G}_i)$ is a simple group, see Goto [3], any nontrivial normal subgroup of $I(\mathfrak{G}) = I(\mathfrak{G}_1) \times I(\mathfrak{G}_2) \times \cdots \times I(\mathfrak{G}_k)$ contains at least one of the $I(\mathfrak{G}_i)$. Q.E.D.

3. Let L be a topological group. For a in L, we denote by C(a) the conjugate class containing a. We define a subset $\mathfrak{C}(L)$ of L by the condition: $a \in \mathfrak{C}(L)$ if and only if the closure of C(a) is compact. Then the following lemma holds obviously.

LEMMA 2. $\mathfrak{C}(L)$ is a normal subgroup of L.

PROPOSITION. Let G be a connected semisimple Lie group without compact components. Then $\mathfrak{C}(A(G)) = \{\epsilon\}$.

PROOF. If it is not true, then by Lemma 1 and Lemma 2 $\mathfrak{C}(A(G))$ must contain some $I(\mathfrak{G}_i)$. Hence it suffices to prove that $I(\mathfrak{G}_i)$ contains a closed subgroup M with $\mathfrak{C}(M) \neq M$.

Since \mathfrak{G}_i is a noncompact simple Lie algebra, there exists a subalgebra \mathfrak{M} of \mathfrak{G}_i , which is isomorphic with sl(2, R), the Lie algebra of all real 2 by 2 matrices with trace 0. (See Goto [2].) Since $I(\mathfrak{G}_i)$ is a Lie group composed of linear transformations, the analytic subgroup M of $I(\mathfrak{G}_i)$, corresponding to M, is closed and is isomorphic with SL(2, R), the real special linear group of two dimension, or with I(SL(2, R)). Since the conjugate class containing

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

in $SL(2, \mathbf{R})$ contains all

$$\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \qquad (\alpha > 0),$$

we have $\mathfrak{C}(M) \neq M$. Q.E.D.

4. PROOF OF THEOREM. Let σ be a continuous automorphism of G. Since $\sigma(h) = h$ implies that $Ad(h)\sigma = \sigma Ad(h)$, if $\sigma(h) = h$ for all h in H, then

$$\left\{\operatorname{Ad}(g)\sigma\operatorname{Ad}(g^{-1});g\in G\right\} = \left\{\operatorname{Ad}(k)\sigma\operatorname{Ad}(k^{-1});k\in K\right\}$$

is compact. Since A(G)/I(G) is finite, $C(\sigma)$ is compact in A(G). Hence $\sigma \in \mathfrak{C}(A(G))$, and by the Proposition $\sigma = \epsilon$. Q.E.D.

In a recent conversation with J. Tits, the author discovered that the main part of this paper is contained in J. Tits, Automorphismes à deplacement borné des groupes de Lie, Topology 3 (1964), 97-107.

BIBLIOGRAPHY

- 1. A. Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. 72 (1960), 179–188.
 - 2. M. Goto, Lattices of subalgebras of real Lie algebras, J. Algebra (to appear).
- 3. —, On an arcwise connected subgroup of a Lie group, Proc. Amer. Math. Soc. 20 (1969), 157-162.
- 4. A. Weil, On discrete subgroups of Lie groups. II, Ann. of Math. 75 (1962), 578-602.

University of Pennsylvania