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1. Statement of results. If /(z) =2+ 2^m-2 anzn is analytic and uni-

valent in the unit disk E (| z\ <1), then it is known [l] that

I 03 — ßa21   i£ 4/u — 3    when m = 1>

(1) S 1 + 2 exp[-2M/(l - u)]    when 0 g p á 1,

^ 3 — 4/i    when m = 0.

The result is sharp in the sense that for each u there is a function in

the class under consideration for which equality holds.

This paper contains analogues of (1) for certain classes of analytic

functions. Explicitly, let y and \ be real numbers, where j -y | <7r/2

and 0i=A<l, and let S(y, X) denote the class of analytic functions

f(z)[in E such that/(0) = 0, /'(0) = 1 and

(2) Re ie* ——V > X cos 7        (2 £ E).

In particular, 5(0, X) is Robertson's class of functions that are starlike

of order X in £ [ö] and 5(0, 0) is the class of normalized starlike func-

tions. The following sharp result is proved in §2.

Theorem 1. Iffiz) =z+ 2~Ln-t anzn is in Siy, X) and if u is a complex

number, then

(3) \az-ßa2\ ^ (1 -X)cos7max(l, | 2cost(1 -X)(2/í-1) -e*\ ).

For each ß, there is a function in S(y, X) for which equality holds.

Hummel ([2], [3]), using variational techniques, proves the conjec-

ture of V. Singh that | a3 —a2| ál/3 for the normalized convex func-

tions in E. Since zf'(z) is starlike if and only if f(z) is convex in

E [5, p. 223], the following extension of this result is obtained.

Corollary 1. Iff(z) =z+ /"-« anzn is analytic and convex in E and

if p is a complex number, then \az— /xa2| íímax (1/3, \pt —1\). The

result is sharp for each ¡x.
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A function/(z) is spiral-like [7] in E if there is a real -y, | -y | <ir/2,

such that/(z) £5(7, 0). Another simple consequence of Theorem 1 is

Corollary 2. If f(z) =z+ ¿Jñ-a a»s" î5 spiral-like in E and if u is

a complex number, then

| a3 - not |   g 2 | p - 11  + | 2m - 1 | .

For each real ¡x, there is a starlike function for which equality holds.

An analytic function f(z) = z + • • •   in £ is close-to-convex [4] if

there is a real y, \y\ <ir/2, and a starlike function g(z)=z+ ■ ■ ■

such that

(4) Re {e* jL^—> > 0        (z C E).
i     í(«) j

In §3 we prove

Theorem 2. 7/ the analytic function fiz)=z+2~2ñ~2anZn in E is

close-to-convex and if u is a real number, then

(5) I a3 - pal I   g max(l, 3 | p - 11 ,  | 4M - 3 | ).

If ^ is outside the interval (0, 2/3), there is an analytic close-to-

convex function for which equality holds.

Let Ko be the subclass of analytic close-to-convex functions /(z)

such that (4) holds with 7 = 0 for some starlike function giz)

= z+ ■ ■ ■  in E. In §4 we prove the following sharp result.

Theorem 3. Iffiz) =z+ 2~ln~2 a»z" îS íW A0 and if u is real, then

1 21
I a3 — pa21   |3-4jj    for p i£ 1/3,

á 1/3 - 4/9M    for 1/3 ^p^ 2/3,
(0)

^ 1    for 2/3 g m = 1,

^4p-3    formel.

For each u, there is a function in Ko such that equality holds.

We suspect that the bounds in (6) are sharp when pCiO, 2/3) for

the wider class of all analytic close-to-convex functions.

2. Proof of Theorem 1. First, if $(z) = 2~2n-i otnzn is in the class B

of functions that are analytic in E and map the unit disk into itself,

then |a2| ^1 — |<xf| (for example, see [5, p. 108]). Therefore, if 5 is

a complex number, we have
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«a - sal I   ¡S I at |   + | s | | «' I   £ 1 + ( | s |   - 1) | a\ I
2

I dto — S<

(7)
^ max(l, I s I ).

Moreover, the functions 4>(z) =z and d>(z) =z2 respectively show that

the result is sharp for |s| ^1 and for |s| <1. Now, by (2), f(z)

= z+ Sn-2 anZn is in S (a, X) if and only if the function

= f'(z)-f(z)/z =   «

W     /'(*) + [il - X)r*» - x]/(z)/z      tianZn

is in the class B. A simple computation shows

ua2 2«   T 1 — X — m   2~| e**
(8)    «i =-,    a2 =-   a3-a2\,    u =-.
W 1-X 1 - XL 2(1 - X)     y 2cos7

The inequality (3) with

_ 1 -\+is+l)u
M =       2(1 - X)

is now obtained by substituting the coefficients (8) into (7). That (3)

is sharp follows from the sharpness of the inequalities (7).

Remark. The same argument also proves

| az - pal |   g (1 - X) cos y + (| 2 cos 7(1 - X)(2M - 1) - e<* | - 1)

I     2 i

• |a2| /4(1 — X) cos 7.

For each a2, where | a2| < 2(1 — X) cos 7, and for each complex number

fj., there is a function in 5(7, X) for which equality holds.

3. Proof of Theorem 2. By (4) the analytic function /(z)

= z+2~2n=2anZn in E is close-to-convex if and only if there exists

a giz) =z+ 2^1n°-2 cnZn in 5(0, 0) such that the function

_,        .     f'(z)-g(z)/Z »
$(z) = e17- = y. <*»z"

f'iz) + e~2<ygiz)/z     „tí

is in the class B of §2. A comparison of the coefficients in the various

power series expansions for the functions in this identity shows

2a2 = c2 + 2 cos ym,        3az = c% + 2 cos y(otic2 + an + eiycti).

Therefore, we have

a3 — pa2 = K¿3 — ißCt) + I cos 7[a2 + (eiy — %p cos y)a\\

+ (p — f ) cos yaiCi.
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Set ju = 2/3. By (7) and Theorem 1, we obtain

| az — f a21   ^ f | c3 — \c21   + | cos y \ a2 + i sin ycti \

á| + fC097ál.

From the Area Theorem [5, p. 210], we have | a3 — a\\ :£ 1 and by (9),

we get | a3| ^3. Thus for 0^p^2/3, it follows that

| a3 — pa21   Si f m | a3 — |a21   + (1 — |m) | «» |   ^ 3(1 — p)

and, for 2/3 ^p g 1, that

| «3 — MÛ21   ^ (3/i — 2) | c3 — a21  +3(1 — p)\ a» — 2a2/3 |   á 1.

The last result is sharp since the close-to-convex class include the

starlike functions 5(0, 0) and the inequality is sharp in the latter

class by Theorem 1. Finally, if p is not in the interval [0, l], then by

(1) |a3— pal\ =|4ju — 3| since the close-to-convex functions are uni-

valent [4].

4. Proof of Theorem 3. From (7), (9) with 7 = 0 and Theorem 1 for
the starlike class, we have

I at-/»«íI   :SM1+H|3m-3|   -l]|cî| }

+ |{1 + *[|3m-2|   -2]|aî|}

+ 3 I 3ju — 2 I  I «11  I d I.
If 1/3Im^2/3, this becomes

I a3 — pa21   ^ 1 + — {(2 — 3p) | c2 \

+ 4(2 -3p)\ai\ \c2\   - 12m I «i I }

1   i (2 -3p)2)   .   2,

-,{|«,| -2-J".\„\}
2 -3p .   2|        1        4

g 1 +-   c2    g — + — ,
18m 3      9m

since |c2| ^2. The result is sharp since there is a starlike function

(the Koebe function g (z) = z/ (1 — z)2) with c2 = 2, c3 = 3 and a function

in B with ai= (2 —3m)/3m, a2 = l—a\, provided 1/3^Má2/3. For

0^m = 1/3, we have
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I a3 — pa21 S 3p | a3 — a2/3 \ + il — 3p)\ a3\ ^ 3 — 4p.

For the remaining choices of p, (6) is a consequence of Theorem 2.

The sharpness for p not in the interval (1/3, 2/3) follows from Theo-

rem 1, since 5(0, 0)CKo.
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