A COEFFICIENT INEQUALITY FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS

F. R. KEOGH¹ AND E. P. MERKES

1. Statement of results. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is analytic and univalent in the unit disk E(|z| < 1), then it is known [1] that

$$|a_3 - \mu a_2^2| \le 4\mu - 3 \quad \text{when } \mu \ge 1,$$

$$(1) \qquad \qquad \le 1 + 2 \exp[-2\mu/(1-\mu)] \quad \text{when } 0 \le \mu \le 1,$$

$$\le 3 - 4\mu \quad \text{when } \mu \le 0.$$

The result is sharp in the sense that for each μ there is a function in the class under consideration for which equality holds.

This paper contains analogues of (1) for certain classes of analytic functions. Explicitly, let γ and λ be real numbers, where $|\gamma| < \pi/2$ and $0 \le \lambda < 1$, and let $S(\gamma, \lambda)$ denote the class of analytic functions $f(z)^{\mathsf{r}}$ in E such that f(0) = 0, f'(0) = 1 and

(2)
$$\operatorname{Re}\left\{e^{i\gamma}\frac{zf'(z)}{f(z)}\right\} > \lambda \cos \gamma \qquad (z \in E).$$

In particular, $S(0, \lambda)$ is Robertson's class of functions that are starlike of order λ in E [6] and S(0, 0) is the class of normalized starlike functions. The following sharp result is proved in §2.

THEOREM 1. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is in $S(\gamma, \lambda)$ and if μ is a complex number, then

(3)
$$|a_3 - \mu a_2|^2 \le (1 - \lambda) \cos \gamma \max(1, |2 \cos \gamma(1 - \lambda)(2\mu - 1) - e^{i\gamma}|)$$
.
For each μ , there is a function in $S(\gamma, \lambda)$ for which equality holds.

Hummel ([2], [3]), using variational techniques, proves the conjecture of V. Singh that $|a_3-a_2^2| \le 1/3$ for the normalized convex functions in E. Since zf'(z) is starlike if and only if f(z) is convex in

E [5, p. 223], the following extension of this result is obtained.

COROLLARY 1. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is analytic and convex in E and if μ is a complex number, then $|a_3 - \mu a_2^2| \leq \max(1/3, |\mu - 1|)$. The result is sharp for each μ .

Presented to the Society, January 24, 1968; received by the editors July 15, 1967 and, in revised form, October 18, 1967.

¹ Supported by the National Science Foundation Grant GP 7377.

A function f(z) is spiral-like [7] in E if there is a real γ , $|\gamma| < \pi/2$, such that $f(z) \in S(\gamma, 0)$. Another simple consequence of Theorem 1 is

COROLLARY 2. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is spiral-like in E and if μ is a complex number, then

$$|a_3 - \mu a_2^2| \le 2 |\mu - 1| + |2\mu - 1|.$$

For each real μ , there is a starlike function for which equality holds.

An analytic function $f(z) = z + \cdots$ in E is close-to-convex [4] if there is a real γ , $|\gamma| < \pi/2$, and a starlike function $g(z) = z + \cdots$ such that

(4)
$$\operatorname{Re}\left\{e^{i\gamma}\frac{zf'(z)}{\varrho(z)}\right\} > 0 \qquad (z \in E).$$

In §3 we prove

THEOREM 2. If the analytic function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ in E is close-to-convex and if μ is a real number, then

(5)
$$|a_3 - \mu a_2^2| \le \max(1, 3 | \mu - 1 |, |4\mu - 3|).$$

If μ is outside the interval (0, 2/3), there is an analytic close-to-convex function for which equality holds.

Let K_0 be the subclass of analytic close-to-convex functions f(z) such that (4) holds with $\gamma = 0$ for some starlike function $g(z) = z + \cdots$ in E. In §4 we prove the following sharp result.

THEOREM 3. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is in K_0 and if μ is real, then

(6)
$$\begin{aligned} |a_3 - \mu a_2^2| &\leq 3 - 4\mu & \text{for } \mu \leq 1/3, \\ &\leq 1/3 - 4/9\mu & \text{for } 1/3 \leq \mu \leq 2/3, \\ &\leq 1 & \text{for } 2/3 \leq \mu \leq 1, \\ &\leq 4\mu - 3 & \text{for } \mu \geq 1. \end{aligned}$$

For each μ , there is a function in K_0 such that equality holds.

We suspect that the bounds in (6) are sharp when $\mu \in (0, 2/3)$ for the wider class of all analytic close-to-convex functions.

2. **Proof of Theorem 1.** First, if $\Phi(z) = \sum_{n=1}^{\infty} \alpha_n z^n$ is in the class B of functions that are analytic in E and map the unit disk into itself, then $|\alpha_2| \leq 1 - |\alpha_1^2|$ (for example, see [5, p. 108]). Therefore, if s is a complex number, we have

(7)
$$\begin{vmatrix} \alpha_2 - s\alpha_1^2 \end{vmatrix} \leq |\alpha_2| + |s| |\alpha_1^2| \leq 1 + (|s| - 1) |\alpha_1^2| \leq \max(1, |s|).$$

Moreover, the functions $\Phi(z) = z$ and $\Phi(z) = z^2$ respectively show that the result is sharp for $|s| \ge 1$ and for |s| < 1. Now, by (2), $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is in $S(\alpha, \lambda)$ if and only if the function

$$\Phi(z) = \frac{f'(z) - f(z)/z}{f'(z) + \left[(1-\lambda)e^{-2i\gamma} - \lambda\right]f(z)/z} = \sum_{n=1}^{\infty} \alpha_n z^n$$

is in the class B. A simple computation shows

(8)
$$\alpha_1 = \frac{ua_2}{1-\lambda}$$
, $\alpha_2 = \frac{2u}{1-\lambda} \left[a_3 - \frac{1-\lambda-u}{2(1-\lambda)} a_2^2 \right]$, $u = \frac{e^{i\gamma}}{2\cos\gamma}$.

The inequality (3) with

$$\mu = \frac{1 - \lambda + (s+1)u}{2(1-\lambda)}$$

is now obtained by substituting the coefficients (8) into (7). That (3) is sharp follows from the sharpness of the inequalities (7).

Remark. The same argument also proves

$$\begin{vmatrix} a_3 - \mu a_2^2 \end{vmatrix} \leq (1 - \lambda) \cos \gamma + (\begin{vmatrix} 2 \cos \gamma (1 - \lambda)(2\mu - 1) - e^{i\gamma} \end{vmatrix} - 1)$$
$$\cdot \begin{vmatrix} a_2^2 \end{vmatrix} / 4(1 - \lambda) \cos \gamma.$$

For each a_2 , where $|a_2| < 2(1-\lambda) \cos \gamma$, and for each complex number μ , there is a function in $S(\gamma, \lambda)$ for which equality holds.

3. Proof of Theorem 2. By (4) the analytic function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ in E is close-to-convex if and only if there exists a $g(z) = z + \sum_{n=2}^{\infty} c_n z^n$ in S(0, 0) such that the function

$$\Phi(z) = e^{i\gamma} \frac{f'(z) - g(z)/z}{f'(z) + e^{-2i\gamma}g(z)/z} = \sum_{n=1}^{\infty} \alpha_n z^n$$

is in the class B of §2. A comparison of the coefficients in the various power series expansions for the functions in this identity shows

$$2a_2 = c_2 + 2\cos\gamma\alpha_1$$
, $3a_3 = c_3 + 2\cos\gamma(\alpha_1c_2 + \alpha_2 + e^{i\gamma}\alpha_1^2)$.

Therefore, we have

(9)
$$a_3 - \mu a_2^2 = \frac{1}{3} (c_3 - \frac{3}{4}\mu c_2^2) + \frac{2}{3} \cos \gamma [\alpha_2 + (e^{i\gamma} - \frac{3}{2}\mu \cos \gamma)\alpha_1^2] + (\mu - \frac{2}{3}) \cos \gamma \alpha_1 c_2.$$

Set $\mu = 2/3$. By (7) and Theorem 1, we obtain

$$\begin{vmatrix} a_3 - \frac{2}{3}a_2^2 \end{vmatrix} \leq \frac{1}{3} \begin{vmatrix} c_3 - \frac{1}{2}c_2^2 \end{vmatrix} + \frac{2}{3}\cos\gamma \begin{vmatrix} \alpha_2 + i\sin\gamma\alpha_1^2 \end{vmatrix}$$
$$\leq \frac{1}{3} + \frac{2}{3}\cos\gamma \leq 1.$$

From the Area Theorem [5, p. 210], we have $|a_3-a_2| \le 1$ and by (9), we get $|a_3| \le 3$. Thus for $0 \le \mu \le 2/3$, it follows that

$$\left| a_3 - \mu a_2^2 \right| \le \frac{3}{2}\mu \left| a_3 - \frac{2}{3}a_2^2 \right| + (1 - \frac{3}{2}\mu) \left| a_3 \right| \le 3(1 - \mu)$$

and, for $2/3 \le \mu \le 1$, that

$$\left| a_3 - \mu a_2^2 \right| \le (3\mu - 2) \left| a_3 - a_2^2 \right| + 3(1 - \mu) \left| a_3 - 2a_2^2/3 \right| \le 1.$$

The last result is sharp since the close-to-convex class include the starlike functions S(0, 0) and the inequality is sharp in the latter class by Theorem 1. Finally, if μ is not in the interval [0, 1], then by $(1) |a_3 - \mu a_2^2| \le |4\mu - 3|$ since the close-to-convex functions are univalent [4].

4. **Proof of Theorem 3.** From (7), (9) with $\gamma = 0$ and Theorem 1 for the starlike class, we have

$$\begin{vmatrix} a_3 - \mu a_2^2 \end{vmatrix} \le \frac{1}{3} \left\{ 1 + \frac{1}{4} \left[\begin{vmatrix} 3\mu - 3 \end{vmatrix} - 1 \right] \begin{vmatrix} c_2^2 \end{vmatrix} \right\}$$

$$+ \frac{2}{3} \left\{ 1 + \frac{1}{2} \left[\begin{vmatrix} 3\mu - 2 \end{vmatrix} - 2 \right] \begin{vmatrix} \alpha_1^2 \end{vmatrix} \right\}$$

$$+ \frac{1}{3} \begin{vmatrix} 3\mu - 2 \end{vmatrix} \begin{vmatrix} \alpha_1 \end{vmatrix} \begin{vmatrix} c_2 \end{vmatrix}.$$

If $1/3 \le \mu \le 2/3$, this becomes

$$|a_{3} - \mu a_{2}^{2}| \leq 1 + \frac{1}{12} \left\{ (2 - 3\mu) \left| c_{2}^{2} \right| + 4(2 - 3\mu) \left| \alpha_{1} \right| \left| c_{2} \right| - 12\mu \left| \alpha_{1}^{2} \right| \right\}$$

$$= 1 + \frac{1}{12} \left\{ 2 - 3\mu + \frac{(2 - 3\mu)^{2}}{3\mu} \right\} \left| c_{2}^{2} \right|$$

$$- \mu \left\{ \left| \alpha_{1} \right| - \frac{(2 - 3\mu)}{6\mu} \left| c_{2} \right| \right\}^{2}$$

$$\leq 1 + \frac{2 - 3\mu}{18\mu} \left| c_{2}^{2} \right| \leq \frac{1}{3} + \frac{4}{9\mu} ,$$

since $|c_2| \le 2$. The result is sharp since there is a starlike function (the Koebe function $g(z) = z/(1-z)^2$) with $c_2 = 2$, $c_3 = 3$ and a function in B with $\alpha_1 = (2-3\mu)/3\mu$, $\alpha_2 = 1-\alpha_1^2$, provided $1/3 \le \mu \le 2/3$. For $0 \le \mu \le 1/3$, we have

$$|a_3 - \mu a_2| \le 3\mu |a_3 - a_2/3| + (1 - 3\mu) |a_3| \le 3 - 4\mu.$$

For the remaining choices of μ , (6) is a consequence of Theorem 2. The sharpness for μ not in the interval (1/3, 2/3) follows from Theorem 1, since $S(0, 0) \subset K_0$.

REFERENCES

- 1. M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89.
- 2. J. Hummel, The coefficient regions of starlike functions, Pacific J. Math. 7 (1957), 1381-1389.
- 3. ——, Extremal problems in the class of starlike functions, Proc. Amer. Math. Soc. 11 (1960), 741-749.
- 4. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.
 - 5. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.
- 6. M. S. Robertson, On the theory of univalent functions, Ann. of Math. 37 (1936), 374-408.
- 7. L. Špaček, Contribution à la théorie des functions univalents, Časopis Pěst. Mat. 62 (1932), 12-19.

University of Kentucky and University of Cincinnati