A COEFFICIENT INEQUALITY FOR CERTAIN CLASSES
OF ANALYTIC FUNCTIONS

F. R. KEOGH! AND E. P. MERKES

1. Statement of results. If f(z) =2+ Y ., a,2" is analytic and uni-
valent in the unit disk E (|z| <1), then it is known [1] that

| a5 — wos| <4u—3 whenp21,
(1) <1+ 2exp[—2p/(1 —p)] whenO=p=1,
<3—4y whenu =0.

The result is sharp in the sense that for each u there is a function in
the class under consideration for which equality holds.

This paper contains analogues of (1) for certain classes of analytic
functions. Explicitly, let ¥ and \ be real numbers, where I'yl <mw/2
and 0=A<1, and let S(y, N\) denote the class of analytic functions
f(2)"in E such that f(0) =0, f/(0) =1 and

) Re {giv Z;I(Z)} > A\ cos y (z €E E).

In particular, S(0, A) is Robertson’s class of functions that are starlike
of order \ in E [6] and S(0, 0) is the class of normalized starlike func-
tions. The following sharp result is proved in §2.

THEOREM 1. If f(2) =2+ 2 mz anz®is in S(y, \) and if pis a complex
number, then
(3) | az — ua22| =< (1 — ) cosy max(1, | 2cos y(1 = N)(2u —1) — &i7|).
For each u, there is a function in S(y, \) for which equality holds.

Hummel ([2], [3]), using variational techniques, proves the conjec-
‘ture of V. Singh that Iaa—agl <1/3 for the normalized convex func-
tions in E. Since zf’(z) is starlike if and only if f(z) is convex in

E [5, p. 223], the following extension of this result is obtained.

COROLLARY 1. If f(2) =2+ D_>., an2" is analytic and convex in E and
if u is a complex number, then I aa—uaﬁl <max (1/3, |,u— 1 l ). The
result is sharp for each p.
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A function f(z) is spiral-like [7] in E if there is a real v, |y| <m/2,
such that f(2) ES(v, 0). Another simple consequence of Theorem 1 is
COROLLARY 2. If f(3) =2+ X s an3® is spiral-like in E and if u is
a complex number, then
| as — pas| <2|w—1] + |22 —1].
For each real p, there is a starlike function for which equality holds.

An analytic function f(z) =2+ - - - in E is close-to-convex [4] if
there is a real ¥, I‘yl <w/2, and a starlike function g(z) =2+ - - -
such that

#f'(2)
@ } >0 (z € E).

0 Re {e""

In §3 we prove

THEOREM 2. If the analytic function f(z) =2+ D 2, aqz" in E is
close-to-convex and if u is a real number, then

() | a5 — paz| < max(1,3|u—1], | 4u—3]).

If u is outside the interval (0, 2/3), there is an analytic close-to-
convex function for which equality holds.

Let K, be the subclass of analytic close-to-convex functions f(z)
such that (4) holds with 4y=0 for some starlike function g(z)
=z+4 - - - in E. In §4 we prove the following sharp result.

THEOREM 3. If f(2) =2+ D =5 anz® is in Ko and if u is real, then

|a3—pa§| =3 —4u forpu =£1/3,
<1/3 —4/9 for1/3 <pu < 2/3,
<1 for2/3<u=1,
<4y —3 foru=1.

(6)

For each p, there is a function in K such that equality holds.

We suspect that the bounds in (6) are sharp when u&(0, 2/3) for
the wider class of all analytic close-to-convex functions.

2. Proof of Theorem 1. First, if ®(z) = Z:=1 a,2" is in the class B
of functions that are analytic in E and map the unit disk into itself,
then |a2| §1—|aﬂ (for example, see [5, p. 108]). Therefore, if s is
a complex number, we have
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< las| + |s| el t+(s| —1]ail
< max(1, I sl ).
Moreover, the functions ®(2) =z and ®(z) =22 respectively show that
the result is sharp for |s| 21 and for |s| <1. Now, by (2), f(2)
=2+ D ra.z"isin S(a, ) if and only if the function
(@) — f(2)/3 >

= " - = Zanzn

f@+ [ =Nesr =2]f@@)/z 2o

is in the class B. A simple computation shows

® Uas 2u [ 1—\AN—u 2] ev
= Qg = az — a u = .
BTN CTINT T a7l 2 cos v

Iaz—sail

(™)

®(z2)

The inequality (3) with

LA+ (s+Du

21 =)

is now obtained by substituting the coefficients (8) into (7). That (3)

is sharp follows from the sharpness of the inequalities (7).
REMARK. The same argument also proves

"

| as—uas| < (1 =N cosy + (| 2cosy(1 = N)(2u — 1) — 7| — 1)
. |a§| /4(1 — ) cos .

For each a;, where | a;| <2(1—)\) cos v, and for each complex number
M, there is a function in S(v, A) for which equality holds.

3. Proof of Theorem 2. By (4) the analytic function f(2)
=2+ Y 1w ,a,3" in E is close-to-convex if and only if there exists
ag(8) =3+ Do cuz™ in S(0, 0) such that the function

"(2) — g(2)/2 ©
B(z) = e - I gF )/ = apz
@) + e*(x)/z 2o
is in the class B of §2. A comparison of the coefficients in the various
power series expansions for the functions in this identity shows

2a; = c3 + 2 cos yay, 3as = ¢z + 2 cos y(aics + as + e“fazl).

Therefore, we have

2 2 . 2
a3 — pos = }(cs — 3ucs) + % cos y[az + (¢ — 3u cos y)a|

© + (v — 3) cos vauce.
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Set u=2/3. By (7) and Theorem 1, we obtain
|a3—§a:| =< %| cs—%czl + 2 cos'yl a2+isin'yaf|
=1+4+2%cosy=1.
From the Area Theorem [5, p. 210], we have |a3—a§| =<1 and by (9),
we get |a3l =<3. Thus for 0=u=<2/3, it follows that
| as — way| < 3u|as —3a;| + (1 —3w)|as| =300 — )
and, for 2/3=<u=<1, that
| a2 —nas| S Gu—2)]as—a3| +301 —w|a—2a/3] =1.

The last result is sharp since the close-to-convex class include the
starlike functions S(0, 0) and the inequality is sharp in the latter
class by Theorem 1. Finally, if u is not in the interval [0, 1], then by
(1) |as—pal| <|4u—3| since the close-to-convex functions are uni-
valent [4].

4. Proof of Theorem 3. From (7), (9) with y=0 and Theorem 1 for
the starlike class, we have
|as —paz| = 3{1+13u—3| —1]]al}
+3{1+3 3w —2| —2]] a1l }
33w =2l el |l

If 1/3=u=2/3, this becomes
1
| a5 — pas| = 1+ e ~ 3w | e

+42 = 3w | ar| | 2| —12u] as] }
(2 — 3w?

—1+1{2 3u + }|2|
BT # 34 °

2-3 2

sl =22 0l

2 — 3u
18u

since ] C2l =<2. The result is sharp since there is a starlike function
(the Koebe function g(z) =2/(1 —2)?) with ¢;=2, ¢3=3 and a function
in B with a1=(2—3u)/3u, aca=1—a?, provided 1/3=u=2/3. For
0=<u=1/3, we have

<1+ Iczl <_1_.+i
= 2 =3 9#’
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| a5 — pas| < 3u] a5 —ar/3| + (1 —3w)| as] <3 — du.

For the remaining choices of u, (6) is a consequence of Theorem 2.
The sharpness for u not in the interval (1/3, 2/3) follows from Theo-
rem 1, since S(0, 0)C K,.
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