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I. A few years ago, H. E. Rauch [2], and more recently the pres-

ent author [l] proved the following

Theorem. The locus of TaiS) possessing a Weierstrass point whose

Weierstrass sequence begins with a fixed r<g is a complex-analytic

submanifold of T°iS) of complex dimension r + 2g — 3 when r + 1 is a

gap, and is a subvariety of complex dimension r+2g — 4 when r + 1 is

not a gap.

When Rauch originally proved this theorem, he mentioned that it

was not altogether clear that the singularity in the exceptional cases

of the theorem is genuine and not a product of the method of proof.

The present author's proof seemed to lend supporting evidence to the

fact that the singularity is indeed genuine.

The purpose of this paper is to point out that for g = i and r = 3

the exceptional case does not occur. We begin with a brief summary

of the pertinent results from the theory of compact Riemann surfaces.

In what follows, 5 will always denote a compact Riemann surface

of genus g.

There are exactly g orders nit 0^wi< • ■ • <ng^2g, that can be

specified at each point pCS such that no nonconstant meromorphic

function exists on 5 whose only singularity is a pole of order «< at p.

Given a general point pCS its gap sequence is (1, 2, • • • , g); how-

ever, there do exist points on S whose gap sequence omits some of

these numbers. These points are called Weierstrass points. In other

words, the gap sequence for a Weierstrass point omits an integer

n, 2^n^g. When we have a surface with a Weierstrass point with

« = 2, the surface is said to be hyperelliptic. It is well known that a

hyperelliptic surface has 2g + 2 Weierstrass points and for each one

of them the gap sequence is (1, 3, • • • , 2g — 1). The complement of

the gap sequence in the sequence of integers (0, 1, 2, ■ • • , 2g) is

called the Weierstrass sequence. In this paper we are concerned with

those compact Riemann surfaces of genus g, g = 4, possessing a

Weierstrass point whose Weierstrass sequence begins with n = 3.
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An integral divisor on 5 is a set of points and associated nonnega-

tive integers p"i ■ ■ ■ pnn- 2^t-i otk=d is called the degree of the

divisor. If / is a meromorphic function on S, denote by p"1 • ■ ■ p"T

and Q\i ■ ■ ■ Qf* the respective zeros and poles of /, the superscripts

denoting multiplicities. The divisor of / is defined to be p"i • • •

P'rrQißl ' " ' Qtßk- Since a meromorphic function/ on 5 has the same

number of zeros as poles, the degree of the divisor of / is zero. The

divisor of an Abelian differential of first kind is defined in an analo-

gous manner.

The Riemann-Roch theorem [3] states that if f is an integral

divisor of degree r, l(l/Ç)=r — g + l+i(Ç) where /(1/f) is defined to

be the dimension of the vector space of meromorphic functions whose

divisors are multiples of 1/f and ¿(f) is defined to be the dimension

of the space of Abelian differentials of first kind whose divisors are

multiples of f.
Suppose f is an integral divisor, degree £<g, and /(l/f)>l. Then

f is said to be a special divisor. For special divisors, Clifford's theorem

[4] states that i(J")ág —1/2 degree f. Furthermore, in the case of

equality, the surface is hyperelliptic. Actually, Clifford's theorem

is generally stated as a theorem on special linear series of degree n

and dimension ri¿n); however, a simple application of the Riemann-

Roch theorem gives the form here stated.

The theorem we wish to prove will follow from the general facts

stated above.

II. Lemma 1. Let p be a Weierstrass point on S whose Weierstrass

sequence begins with 3. Then lil/p3) =2.

Proof. By hypothesis, there exists a meromorphic function f on S

whose only singularity is a pole of order 3 at p. Hence {1,/} CLil/pz),

where Lil/p3) is the vector space of meromorphic functions whose

divisors are multiples of 1/p3. If lil/p3) =3, by the Riemann-Roch

theorem, 3=3— g + l+iip3) or i(p3) =g — l- This of course implies

that i(p2)=g — 1 which, by another application of Riemann-Roch,

implies the existence of a meromorphic function with a second order

pole at p. This would contradict the hypothesis that the Weierstrass

sequence begins with 3.

Lemma 2. // the Weierstrass sequence at p begins with 3 and, if 4 is

not a gap, then lil/p*) =3.

Proof. Z(l/p4)I){l,/, g\ where g is a function whose only sin-

gularity is a pole of order 4 at p. The fact that /(1/p4) <4 follows in

the same way that we've shown in Lemma 1 that lil/p3) <3. The
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proof is complete providing we make the trivial observation that

{l>/i i} are linearly independent.

Lemma 3. // the Weierstrass sequence at p begins with 3, and if 4 is

not a gap, then S is hyperelliptic.

Proof. By Lemma 2 lil/p*) =3. By the Riemann-Roch theorem,

lil/pi)=i-g + l+iipt)=3 which implies that i(pl)=g-2. Hence,

if g = 5 we have produced a special divisor p* of degree 4 with iip4)

= g —1/2 deg(p4)=g —2. By Clifford's theorem S is hyperelliptic.

If g =4, we have a divisor of degree 4 and index 2. Therefore, there

are two linearly independent Abelian differentials of first kind whose

divisors are multiples of p*. Denote these differentials by wi and w2.

wi/wi is then a meromorphic function on S with precisely two poles

which implies hyperellipticity.

Theorem 1. Let S be a compact Riemann surface of genus g 2:4.

Let p be a Weierstrass point on S whose Weierstrass sequence begins

with 3. Then 4 is a gap.

Proof. By Lemma 3, if 4 were not a gap, then S would be

hyperelliptic. Therefore 5 would have 2g+2 Weierstrass points

whose sequences all are (2, 4, • • • , 2g) contradicting the fact that

there is a Weierstrass point whose Weierstrass sequence begins with 3.

Theorem 2. The locus of T'iS), g = 4-, possessing a Weierstrass point

whose Weierstrass sequence begins with 3 is 2g complex dimensional

complex analytic submanifold of TaiS).

Proof. The exceptional case having been ruled out, the proof is

the same as in [l] or [2].

We end with the following remark: In [l], [2] it was shown that

the exceptional case does not occur when r = 2, confirming the well-

known fact that the hyperelliptic surfaces are a 2g —1 complex di-

mensional complex analytic submanifold of T'iS). Here we have

shown that the exceptional case does not occur when r=3 and g =^4.

It seems quite likely though that for r>3 the singularity is indeed

quite genuine.

Added in proof. Theorem 1 can of course be proved without

resorting to Clifford's theorem. It is an almost immediate consequence

of the Weierstrass gap theorem. We have chosen the proof given

above to show the more general fact that given a special divisor of

degree 3, say f, such that i(f) =g —2, then for any point pCS iipÇ)

= g — 3 unless 5 is hyperelliptic.
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