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We give here a simple new proof of the following well-known

Theorem. Let ï be an inner product space over the field C of all com-

plex numbers (defined as in [l, p. 106]), and let A be a linear operator

on ï into itself. Then the numerical range of A, that is the set

W = {(AX,X):XEX and \\x\\ = l},

will be a convex subset of the complex plane.

Proof. We need consider only the case where the set W contains

at least two points. Let Xk (k = l, 2) be any two elements of X with

|jX*|J = 1 such that (AXk, Xk) = wk are two distinct points of W. As Xi

+2X2 = 0 for a 2 in C will imply that \z\ =1 and then that Wi = w2,

we see that )|Xi+zXs|| 5^0 for all z in C. So the theorem will be proved

if we show that, for any given real number t with 0 < ¿ < 1, there exists

at least one complex number z = x-sriy (with x, y real) which satisfies

the equation

(1) (A(Xi + zX2), Xi + zX2) = (twi+ (1 - l)w2)-(\\Xi+zX2\\)\

This equation may be rewritten in the form

(2) p-|z|2 + ?-z+r-z + i = 0,

where p = t(w2 — wi), s=(\—t)(wi — w2) and q, rEC. Dividing this

equation by p, and then separating the real and imaginary parts, we

get the two equations

(3) x2 + f- + ax + by - ((1 - 0/0 - 0,

and

(4) ex + dy = 0,

where a, b, c, d are some well-defined real numbers such that this pair

of equations is equivalent to the single equation (1).

On the rectangular cartesian (x, y) -plane, the equation (3) repre-
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sents a real circle with a positive radius having the origin in its in-

terior (because the constant term in this equation is negative); and

when c, d are not both zero, the straight line represented by the

equation (4) meets this circle in two real and distinct points. We can,

therefore, always find (at least) two distinct complex numbers zk

such that z=zk satisfy the equation (1). This proves slightly more

than what we set out to prove.

For real inner product spaces ï we may similarly reduce the proof

of the corresponding theorem to showing that a certain quadratic

equation with real coefficients has real roots.

The author wishes to thank Professor V. Ganapathy Iyer for his

encouragement and guidance.
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A NOTE ON ABSOLUTE SUMMABILITY1

J. A. FRIDY

Let A be an infinite matrix defining a sequence to sequence map-

ping by (Ax)n = E* ankxk. The purpose of this note is to present a

short elementary proof of the result that characterizes /-/ methods

(if E* |**| converges, then E« I G4x)„| converges). The proof in

[2] is complicated by the fact that A is applied to the sequence of

partial sums, rather than to x itself. Although the proof of Knopp and

Lorentz [l] is elegant, it depends on the Principle of Uniform

Boundedness.

Theorem. The matrix A defines an l-l method if and only if there is a

number M such that for each ¿

(*) E I <UI  á-M.
n

Proof. The sufficiency of (*) is easy since it yields

E I M*). I &M E 1**1-
n k

If A is an /-/ method, it is clear that each row sequence of A must

be bounded: say \ank\ ^B„ for each ¿. It is also obvious that each
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